Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Introduces High Current 80VDC Board-Mount EMI Filters

    Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

    TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

    Sumida Announces New DC Common Mode Choke Coil Series

    KYOCERA AVX Releases New 3dB Hybrid Couplers

    SCHURTER Unveils High Voltage Fuses for EV Applications

    YAGEO Releases First to Market 750V Aluminum Capacitors

    binder Introduces M9 Compact Circular Connector

    Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Introduces High Current 80VDC Board-Mount EMI Filters

    Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

    TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

    Sumida Announces New DC Common Mode Choke Coil Series

    KYOCERA AVX Releases New 3dB Hybrid Couplers

    SCHURTER Unveils High Voltage Fuses for EV Applications

    YAGEO Releases First to Market 750V Aluminum Capacitors

    binder Introduces M9 Compact Circular Connector

    Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Capacitors Pre-charging in Drive Circuits Using Pulse-Withstanding Resistors

9.2.2023
Reading Time: 5 mins read
A A

This article published by Rutronik discusses pre-charging of capacitors using pulse-withstanding resistors in drive circuits.

Electric motors are usually controlled using converters. Electrolytic capacitors are frequently used to stabilize and buffer the DC voltage in the DC link.

RelatedPosts

Tantalum Polymer Capacitors Benefits in Decoupling Applications

Over-Voltage and Over-Current Protection Explained

Rutronik and Yageo Secure Long-Term Supply of MLCCs

There are a number of issues to consider with switching these capacitors in and out of the circuit.

When a capacitor is charged through a resistor, the increase in voltage follows a curve in the form of a natural exponential function (Figure 1, blue line). The relevant charging current of the capacitor (green) on the other hand takes the form of a decaying natural exponential function.

Figure 1. The voltage and charging current of a capacitor follow opposing natural exponential functions.

In an example of charging of 5000uF 100V capacitor through 50Ohm resistor (see Fig.2.) the maximum current flows right at the start of the charging process, at which point it is 100 V/50 Ω = 2 A. After around 1.5 seconds the capacitor reaches a voltage of close to 100 V, while the current is close to 0 A.

Figure 2. Charging a capacitor at 5,000 µF to a voltage of 100 V through a resistor of 50 Ω.

Let’s say this capacitor is charged without using a resistor, so that when the voltage is “hard switched,” there is only a very low specific resistance in the supply line—estimated to be 10 mΩ—in which case there is theoretically a current of up to 10,000 A at the first moment of charging!

However, in reality, in addition to the ohmic resistance of the connecting wire, there are other elements providing resistance:

  • the ohmic resistance of the capacitor estimated at around 25 mΩ
  • the internal resistance of the voltage source estimated at around 20 mΩ
  • the transfer resistance of the connecting terminals, switching contacts, etc. of max. 5  mΩ

This means that a realistic total resistance would be around 50 mΩ. With this, there is a still a peak current of over 2,000 A (100 V/0.05 Ω = 2,000 A).

While this very high current would only be flowing for a very brief moment, you can still imagine what impact these current surges can have on other components — certainly so, when you remember that DC voltages of 800 V are commonplace in DC link solutions for converters nowadays.

Switch-On Processes in Consideration of Wire Inductance

If we consider not only the capacitance but also any wire inductance as shown in Figure 3, we observe behavior such as that seen in Figure 4.

Figure 3. Charging a capacitor at 5,000 µF to a voltage of 100 V with a resistance of 7 mΩ and a wire inductance of 7 µH.
Figure 3. Behavior of a capacitor during charging, taking wire inductance into account.

Without going into detail, the graph shows clearly that the voltage (blue curve) is no longer a natural exponential function, instead oscillating towards a value of around 100 V. Briefly, it will reach a value of up to 170 V, around 70% higher than the externally applied output voltage!

The current (green curve) also peaks at around 2,100 A just after switch-on due to the additional inductance.

In other words, the current reaches very high values and overvoltages with voltage surges of up to double the externally applied voltage possibly occurring even if all ohmic resistors, inductors, and capacitors to be charged in the charging circuit are accounted for.

This is why hard-switching a capacitor should always be avoided. Pre-charging a capacitor allows the aforementioned behavior to be almost entirely prevented.

Similar behavior occurs when discharging a capacitor, which is why it is also recommended to provide a resistor for the discharging process.

Pulse-Withstanding Pre-Charge Resistors

A very simple and cost-effective approach is provided here by pulse-withstanding charge resistors, which can be connected in series with the capacitor for a certain time. All that is needed here is a pre-charge branch connected in parallel to the main switch. This branch needs to fulfill the following requirements:

Use of the current-limiting effect of the resistor

Two-step switch-on process:            

  1. The pulse-withstanding resistor is used to pre-charge the capacitor until it has almost entirely reached the externally applied voltage level
  2. The capacitor is directly connected by bridging the pre-charge branch connected in parallel with the main switch

A mechanical or electrical lock-out mechanism that prevents switch-on without a pre-charge.

A wide range of pre-charge resistors is offered by leading power resistor manufacturers. These include cement-coated wire resistors from 3 to 18 W and high-load resistors with aluminum housing from tenths to hundreds W. Customized solutions can be often ordered as well for special requirements. For example, increased voltage requirements, special geometric forms, and also enhanced cooling solutions can be implemented.

Related

Source: Rutronik

Recent Posts

Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

2.7.2025
5

YAGEO Releases First to Market 750V Aluminum Capacitors

30.6.2025
33

Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

30.6.2025
17

Learn How Supercapacitors Enhance Power System in Knowles eBook

30.6.2025
13

TDK Releases Industry First 1uF 100V X7R MLCCs in 1608 Case

27.6.2025
18

YAGEO Extends Lifetime of its Aluminum SMD Chip Capacitors to 5500hrs at 125C/Ur

27.6.2025
21

Murata Releases Worlds First 10µF/50V Automotive MLCC in 0805 Size

26.6.2025
47

Vishay Expands Automotive High Frequency Thin Film Chip Resistors

26.6.2025
23

Advancements and Applications of Switch Capacitor Power Converters

25.6.2025
33

Samsung Delivers Silicon Capacitors to Marwell AI Systems

24.6.2025
62

Upcoming Events

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

Jul 29
16:00 - 17:00 CEST

Impact of Elevated Voltage and Temperature on Molded Power Inductors in DC/DC converters

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version