Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Wk 40 Electronics Supply Chain Digest

    Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

    Electrolyte Selection and Performance in Supercapacitors

    Connector PCB Design Challenges

    Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

    Stackpole Offers High Voltage Plate Resistors up to 40KV

    How to Manage Supercapacitors Leakage Current and Self Discharge 

    Qualification of Commercial Supercapacitors for Space Applications

    Experimental Evaluation of Wear Failures in SMD Inductors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Wk 40 Electronics Supply Chain Digest

    Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

    Electrolyte Selection and Performance in Supercapacitors

    Connector PCB Design Challenges

    Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

    Stackpole Offers High Voltage Plate Resistors up to 40KV

    How to Manage Supercapacitors Leakage Current and Self Discharge 

    Qualification of Commercial Supercapacitors for Space Applications

    Experimental Evaluation of Wear Failures in SMD Inductors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Capacitors Derating and Category Concepts

2.5.2025
Reading Time: 6 mins read
A A

The article explains capacitor derating principle and introduce category concepts. Almost all major capacitor technologies need a certain derating at their corner operating conditions.

However, physical reasons for this may be specific to individual capacitor technology – reliability, stability of the main electrical parameters or protection against excessive surge current …

RelatedPosts

Different Causes of Capacitor Degradation and Failure Mechanisms

Capacitor Charging Losses Explained

Supercapacitor Balancing Methods Comparison

There are two most common derating parameters: voltage (that may include hidden current limitation) and temperature

The derating factors are typically in “OR“, “whatever is greater” logic relationship, so if the voltage derating rule says 20% and due to the temperature you have to derate 30% as well, “whatever is greater” condition applies – it means that the 30% derating is covering both voltage and temperature derating requirements.

Example of capacitor voltage – derating chart:

Figure 1. tantalum polymer capacitors derating example chart; source: Kemet Electronics

Category Concepts and Derating

Recommendation for voltage derating means that the actual capacitor shall be used in the application at lower voltage than rated voltage. Derating is expressed usually by percentage of rated voltage that shall be subtracted. For example 20% derating means that the capacitor shall be used at 80% of rated voltage at the specific applications (10V capacitor to be used on 8V maximum).

The purpose of the derating is to reduce amount of load accelerating factors to the capacitors. The two main accelerating factors are voltage and temperature.

As per the equation C1-20 energy content is depending to voltage squared, thus voltage reduction (voltage derating) has a significant impact to overall energy handling through the capacitor. Reasons for voltage derating can be various depending to the capacitor technology, construction and applications.  The main general reasons for voltage derating can be as follows, nevertheless it may be good to study the capacitor manufacturer’s application guidelines.

  • high operating temperature derating (“temperature derating”) and category concepts

Capacitors designed for DC voltages produce no internal heating. Therefore they often can be used with more or less reduced voltages up to the so called upper category voltage where the temperature characteristics of the material put a limit. This occur at the upper category temperature, TUC, in other nomenclatures called maximum usage temperature. The connections are shown in the following Figure 2. Varying derating curves are shown in MIL-HDBK-1547.

Figure 2. Typical voltage derating at the upper category temperature.

Note: derating due to the high operating temperature (see below) is sometimes called “temperature derating”, but this may cause some confusion. Degradation mechanisms are usually accelerated by both temperature and voltage factors, just with different root coefficient and predominant impacts. Thus the term “temperature derating” should be left to “limitation of use of the capacitor at lower then rated temperature due to a predominant temperature driven physical degradation mechanism”. In other words, we need mostly to have a voltage derating in place to limit amount of overall energy in the capacitor, but in some cases degradation process is accelerated more by temperature factor (and we want to limit this by limitation of maximum exposed temperature “temperature derating”)

  • surge current load limitation

Some capacitors, such as tantalum solid capacitors, may have limitation in its maximum allowed current surge spike. Current surge overloading may cause in some cases even thermal destruction and fatal failures in some cases.  The practical method to increase the surge current load capability is to use higher voltage capacitor, in other words use higher voltage derating. The derating recommendation may be then dependent to circuit function, application or specific capacitor technology.

As an example of solid tantalum capacitors the basic rules are:

tantalum MnO2 capacitors: 50% derating in high current surge applications (such as input side of DC/DC converters or directly on battery), 20% for other applications (coupling, timing, DC/DC output)

tantalum polymer capacitors: 10% for all circuits for <= 10V capacitors, 20% for all circuits for >10V capacitors

These derating guidelines are typically specified to 105°C (temperature derating). Additional derating may be necessary up to 125°C.

  • reliability improvement

voltage is one of the strongest accelerator for number of failure mechanisms and thus its reduction may significantly improve the component reliability.

As an example aluminium electrolytic or film capacitors life time is strongly influenced by applied voltage and voltage derating is the most effective way to increase life time and reduce MTBF rate.

  • capacitors electrical parameters stability (MLCC capacitors)

voltage may play an important inhibitor role in number of mechanisms. High K ferro-dielectrics such as BaTiO3 used in Class II MLCC capacitors are featuring strong dependency of capacitance value to AC and DC voltage (DC BIAS voltage impact). Applied voltage is also condition for piezo-effect that may cause harmful audio noise generation by MLCC class II capacitors.

Voltage derating may significantly suppress these phenomenons and thus improve performance of MLCC class II capacitors.

Multiplication of derating requirements

Different voltage derating requirements are usually in “OR” logic,”whatever is greater” relation. It means that the greatest derating principle is applied only.

in example: 12V input side of DC/DC converter (high surge current load application). Maximum operated temperature of end devices:  125°C and 105°C. Can we use 16V tantalum polymer or tantalum MnO2 capacitors?

  • 125°C device with tantalum polymers: 20% voltage derating is recommended for 16V tantalum polymer capacitor in all applications and there is also 33% derating needed at 125°C (no derating to 105°C). You can apply maximum 10.7V to the capacitor for the entire operation temperature range to 125°C (voltage derating 20% is covered by the 33% temperature derating). Thus 16V capacitor is NOT suitable for 125°C device due to the high temperature. Need higher rated 20V tantalum polymer capacitor.
  • 105°C device with tantalum polymers: there is no derating due to the temperature at 105°C, thus 20% derating for all circuits would apply only. It means 16V tantalum polymer capacitors CAN BE USED used up to 12.8V in the 105°C entire temperature range.
  • Can tantalum MnO2 capacitors be used ? Tantalum MnO2 capacitors require 50% derating for hard surge current applications, thus 25V capacitors has to be used in this application. There is also 33% derating for 125°C device, but this is not effective as the 33% derating due to temperature is covered by the 50% derating due to the surge current limitation. 16V tantalum MnO2 capacitors can be used at other non-surge critical circuit applications (output of the DC/DC, timing, coupling …) reflecting the 20% derating rule due to the surge and the same derating due to the temperature as tantalum polymer capacitors.

Related

Recent Posts

Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

3.10.2025
16

Electrolyte Selection and Performance in Supercapacitors

3.10.2025
16

Connector PCB Design Challenges

3.10.2025
17

Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

2.10.2025
23

How to Manage Supercapacitors Leakage Current and Self Discharge 

1.10.2025
36

Qualification of Commercial Supercapacitors for Space Applications

1.10.2025
36

Experimental Evaluation of Wear Failures in SMD Inductors

1.10.2025
35

Resonant Capacitors in High-Power Resonant Circuits

1.10.2025
36
a Schematic diagram of the BNT-based components constructed based on the entropy-increase strategy. b Digital photograph, cross-sectional SEM image, and EDS mappings of the MLCCs. c Unipolar P-E loops of MLCCs as a function of applied E. d Wrec and η of the MLCCs as a function of applied E. The comparison of (e) Wrec and η, (f) η and UF of the MLCCs with those of other recently reported state-of-the-art MLCCs. source: Nature Communications

Researchers Proposed Enhanced Energy Storage MLCC

1.10.2025
16

Improving SMPS Performance with Thermal Interface Material

30.9.2025
12

Upcoming Events

Oct 8
11:00 - 12:00 CEST

PCB Online Shop – simply “Made in Germany” by Würth Elektronik

Oct 14
16:00 - 17:00 CEST

Smart Sensors, Smarter AI: Building Reliable Edge Systems

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version