Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Transformer Design Optimization for Power Electronics Applications

    Microhardness — the Hidden Key to Understanding MnOx Cathode Quality in Tantalum Capacitors

    Samsung to Invest in its Philippine MLCC Facility to Meet Automotive Demand

    Lightweight Model for MLCC Appearance Defect Detection

    DMASS Reports First Positive Signs of European Distribution Market in Q3/25

    TAIYO YUDEN Releases 22uF MLCC in 0402 Size for AI Servers

    Wk 44 Electronics Supply Chain Digest

    Bourns Releases High Current Metal Alloy-based, Multilayer Power Chip Inductors

    Smiths Interconnect Extends Space-Qualified, High-Reliability Fixed Chip Attenuators 

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Transformer Design Optimization for Power Electronics Applications

    Microhardness — the Hidden Key to Understanding MnOx Cathode Quality in Tantalum Capacitors

    Samsung to Invest in its Philippine MLCC Facility to Meet Automotive Demand

    Lightweight Model for MLCC Appearance Defect Detection

    DMASS Reports First Positive Signs of European Distribution Market in Q3/25

    TAIYO YUDEN Releases 22uF MLCC in 0402 Size for AI Servers

    Wk 44 Electronics Supply Chain Digest

    Bourns Releases High Current Metal Alloy-based, Multilayer Power Chip Inductors

    Smiths Interconnect Extends Space-Qualified, High-Reliability Fixed Chip Attenuators 

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Carbon films can give microchips energy storage capability

15.2.2016
Reading Time: 3 mins read
A A

source: Energy Harvesting Journal article

After more than half a decade of speculation, fabrication, modeling and testing, an international team of researchers led by Drexel University’s Yury Gogotsi, PhD, and Patrice Simon, PhD, of Paul Sabatier University in Toulouse, France, have confirmed that their process for making carbon films and micro-supercapacitors will allow microchips and their power sources to become one and the same.

RelatedPosts

Transformer Design Optimization for Power Electronics Applications

Microhardness — the Hidden Key to Understanding MnOx Cathode Quality in Tantalum Capacitors

Samsung to Invest in its Philippine MLCC Facility to Meet Automotive Demand

The discovery, which was reported in a recent edition of the journal Science, is the culmination of years of collaborative research by the team who initially created the carbide-derived carbon film material for microsupercapacitors and published the concept paper in Science in 2010. Since then, their goal has been to show that it’s possible to physically couple the processing center of an electronic device — the microchip — with its energy source.

“This has taken us quite some time, but we set a lofty goal of not just making an energy storage device as small as a microchip — but actually making an energy storage device that is part of the microchip and to do it in a way that is easily integrated into current silicon chip manufacturing processes,” said Simon, who led the research under the aegis of the French research network on electrochemical energy storage (RS2E), a spin-off of Le Centre National de la Recherche Scientifique (CNRS) and France’s Ministry of Research. “With this achievement, the future is now wide open for chip and personal electronics manufacturers.”

It confirms a belief that the group has held since the materials were first fabricated — that these films are versatile enough to be seamlessly integrated into the systems that power silicon-based microchips that run devices from your laptop to your smart watch. The challenges that the group faced in the development of the material were questions about its compatibility, its mechanical stability and durability for use on flexible substrates. With these answered, it opens up a myriad of possibilities for carbon films to work their way into silicon chips — including building microscale batteries on a chip.

“The place where most people will eventually notice the impact of this development is in the size of their personal electronic devices, their smart phones, fitbits89 and watches,” said Gogotsi, Distinguished University and Trustee Chair Professor in the Department of Materials Science Engineering who directs the A.J. Drexel Nanomaterials Institute in Drexel’s College of Engineering. “Even more importantly,” Gogotsi adds, “on-chip energy storage is needed to create the Internet of Things – the network of all kinds of physical objects ranging from vehicles and buildings to our clothes embedded with electronics, sensors, and network connectivity, which enables these objects to collect and exchange data. This work is an important step toward that future.”

The researchers’ method for depositing carbon onto a silicon wafer is consistent with microchip fabrication procedures currently in use, thus easing the challenges of integration of energy storage devices into electronic device architecture. As part of the research, the group showed how it could deposit the carbon films on silicon wafers in a variety of shapes and configurations to create dozens of supercapacitors on a single silicon wafer. Supercapacitors have been desirable devices to use in microelectronics because they can store a great deal of energy for their size, they can be charged and discharged their energy extremely quickly and their lifespan is nearly limitless. With this discovery, the path is clear for microchip manufacturers to take a big step forward in the way they design their products. Beyond the energy storage applications, these carbon films offer good prospects for the development of elastic coatings with a low coefficient of friction that can be used in lubricant-free sliding parts, such as dynamic seals. They may also be used in production of membranes for gas filtration, water desalination or purification, because their pore size is in the range of single molecules. The carbon films produced by this method are quite versatile and may find applications in many areas.

Source and top image: Drexel University

Related

Recent Posts

Microhardness — the Hidden Key to Understanding MnOx Cathode Quality in Tantalum Capacitors

3.11.2025
13

Samsung to Invest in its Philippine MLCC Facility to Meet Automotive Demand

3.11.2025
9

Lightweight Model for MLCC Appearance Defect Detection

3.11.2025
10

DMASS Reports First Positive Signs of European Distribution Market in Q3/25

3.11.2025
6

TAIYO YUDEN Releases 22uF MLCC in 0402 Size for AI Servers

3.11.2025
7

Samtec Expands Offering of Slim, High-Density HD Array Connectors

30.10.2025
10

Bourns Unveils High-Precision Wirewound Resistor with Long-Term Stability

30.10.2025
22

Capacitor Self-balancing in a Flying-Capacitor Buck Converter

30.10.2025
29

Murata Expands Automotive Metal Frame Y2/X1 Safety MLCC Capacitors to 500V

30.10.2025
33

Exxelia 4-Terminal Safety Capacitors Compliant with NF F 62-102 Railway Standard

27.10.2025
33

Upcoming Events

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

Nov 6
14:30 - 16:00 CET

Self-healing polymer materials for the next generation of high-temperature power capacitors

Nov 11
17:00 - 18:00 CET

Industrial Applications Demand More from Interconnects in Next-Gen Designs

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version