Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Würth Elektronik Releases High-Frequency Connectors for Antenna Cables

    Murata Releases First High-Frequency XBAR Filter for Next-Gen Networks

    Vishay NTC Immersion Thermistor Delivers Fast Response in Liquid Cooled Automotive Systems

    Wk 27 Electronics Supply Chain Digest

    VINATech Supercapacitors Enhance Automotive Safety with Reliable E-Latch Emergency Power

    Exxelia Unveils Advanced Components for the Medical Device Industry

    TDK Introduces High Current 80VDC Board-Mount EMI Filters

    Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

    TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Würth Elektronik Releases High-Frequency Connectors for Antenna Cables

    Murata Releases First High-Frequency XBAR Filter for Next-Gen Networks

    Vishay NTC Immersion Thermistor Delivers Fast Response in Liquid Cooled Automotive Systems

    Wk 27 Electronics Supply Chain Digest

    VINATech Supercapacitors Enhance Automotive Safety with Reliable E-Latch Emergency Power

    Exxelia Unveils Advanced Components for the Medical Device Industry

    TDK Introduces High Current 80VDC Board-Mount EMI Filters

    Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

    TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Ceramic Capacitors Supporting DC Link Filters

10.10.2023
Reading Time: 4 mins read
A A

This article based on Knowles Precision Devices blog discusses in brief role of ceramic capacitors supporting DC link filters.

In power electronics, the DC link refers to the section that connects the input and output sides of the power conversion system (Figure 1).

RelatedPosts

Learn How Supercapacitors Enhance Power System in Knowles eBook

Role of High-Q Ceramic Filters to Overcome GNSS Jamming

Knowles Extends Range and Performance of C0G MLCC Capacitors

The primary function of the DC link is to store energy during the times when the input power is higher than the output power and release energy when the output power demand exceeds the input power.

The DC link should include a capacitor that servers as a supporting filter to act as a buffer, minimize voltage ripples, and smooth and stabilize the power flow between various components such as rectifiers, inverters, and other converters in the power system.

Figure 1. A representation of where the DC link is positioned in a power conversion system. Source.

Capacitors Used on the DC Link

To efficiently operate a power electronics system, it is essential to have large capacitors on the DC link. These capacitors are typically aluminum electrolytic and film capacitors as these options offer high capacitance values and are suitable for energy storage. The key functions of these capacitors include the following:

  • Smoothing Ripples: During the power conversion processes there are fluctuations and ripples in the DC voltage output. The large capacitors on the DC link help smooth out these voltage ripples, ensuring a more stable and constant voltage supply to the load.
  • Energy Storage: Large capacitors on the DC link act as energy reservoirs, storing surplus energy during periods of low load demand and releasing energy when the load requires additional power. This energy buffering capability enhances the overall efficiency and performance of the power electronics system.
  • Surge Suppression: Power electronics systems may encounter voltage surges or transients during switching events or external disturbances. The presence of large capacitors on the DC link enables them to absorb and suppress these voltage surges, protecting sensitive components from damage.

However, relying solely on these large capacitors may not be sufficient for addressing all the requirements of the power electronics system.

To enhance the performance and reliability of the DC link supporting capacitor filter, it is imperative to include ceramic capacitors in the design as well. Ceramic capacitors have unique characteristics that complement the qualities of the aluminum electrolytic and film capacitors nicely including the following:

  • Fast Response Time: Ceramic capacitors have significantly faster response times compared to electrolytic and film capacitors. This means ceramic capacitors can efficiently handle high-frequency noise and transients that other capacitors might struggle to address adequately.
  • Low Equivalent Series Resistance (ESR) and Equivalent Series Inductance (ESL): The ESR and ESL of ceramic capacitors are much lower than the ESR and ESL of electrolytic capacitors. This results in reduced power losses and improved filtering capabilities.
  • Compact Size: Ceramic capacitors offer high capacitance values relative to their compact size. Integrating these capacitors into the DC link supporting capacitor filter allows for efficient space utilization and helps reduce the overall size and weight of the power electronics system.
Figure 2. An example of where ceramic capacitors can be used in an electric vehicle on-board charger to stabilize the DC link.

Helping You Incorporate Ceramic Capacitors as DC Link Supporting Filters

Since Knowles Precision Devices’ engineers have vast experience designing capacitors into both complex and common power electronics systems, we understand that ceramic capacitors are often intuitively added into the final design to support the DC link. This is important because less experienced engineers who may be utilizing reference designs, which don’t always include these extra DC link filters, may not know to design these in – but we can help!

Related

Source: Knowles Precision Devices

Recent Posts

Vishay NTC Immersion Thermistor Delivers Fast Response in Liquid Cooled Automotive Systems

8.7.2025
4

Würth Elektronik Present Efficient Motor Controller Evaluation Kit

8.7.2025
6

VINATech Supercapacitors Enhance Automotive Safety with Reliable E-Latch Emergency Power

7.7.2025
23

Exxelia Unveils Advanced Components for the Medical Device Industry

9.7.2025
39

TDK Introduces High Current 80VDC Board-Mount EMI Filters

2.7.2025
26

Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

2.7.2025
16

TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

1.7.2025
21

Sumida Announces New DC Common Mode Choke Coil Series

1.7.2025
15

SCHURTER Unveils High Voltage Fuses for EV Applications

30.6.2025
10

YAGEO Releases First to Market 750V Aluminum Capacitors

30.6.2025
49

Upcoming Events

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

Jul 29
16:00 - 17:00 CEST

Impact of Elevated Voltage and Temperature on Molded Power Inductors in DC/DC converters

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version