Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Smolteks CNF MIM Capacitor Break 1 µF/mm²

    Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

    Murata Announces 0402 Automotive Chip Ferrite Beads for V2X

    2025 Thick and Thin Film Resistor Networks Environment Overview

    Role of High-Q Ceramic Filters to Overcome GNSS Jamming

    Optimization of IoT for GEO NB-NTN Hybrid Connectivity

    TDK Releases Automotive Power-Over-Coax Inductor for Filters

    Advanced Conversion Announces Mass Production of 200C Film Capacitors

    VinaTech Supercapacitors: Enhancing Smart Meter Reliability and Efficiency

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Smolteks CNF MIM Capacitor Break 1 µF/mm²

    Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

    Murata Announces 0402 Automotive Chip Ferrite Beads for V2X

    2025 Thick and Thin Film Resistor Networks Environment Overview

    Role of High-Q Ceramic Filters to Overcome GNSS Jamming

    Optimization of IoT for GEO NB-NTN Hybrid Connectivity

    TDK Releases Automotive Power-Over-Coax Inductor for Filters

    Advanced Conversion Announces Mass Production of 200C Film Capacitors

    VinaTech Supercapacitors: Enhancing Smart Meter Reliability and Efficiency

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Choosing High-Frequency Capacitors; Role of Dielectric Material

12.7.2024
Reading Time: 3 mins read
A A

This article based on Knowles Precision Devices blog explains role of dielectric material when choosing high-frequency capacitors.

Radio frequency (RF) and microwave applications involve the transmission and receipt of high-frequency electromagnetic signals. RF refers to alternating current (AC) signals at 3 kHz to 300 GHz, and microwave refers to a higher range, closer to 300 MHz to 300 GHz. 

RelatedPosts

Role of High-Q Ceramic Filters to Overcome GNSS Jamming

Knowles Extends Range and Performance of C0G MLCC Capacitors

Supercapacitors Benefits in Industrial Valve Fail-Safe Control Systems

Capacitance, and by extension impedance, varies with frequency, so capacitors play a variety of critical roles in these RF and microwave circuits. With many options for configuration, they function in energy storage and voltage regulation, DC blocking, impedance matching, filtering and more. 

When choosing high-frequency ceramic capacitors for radio frequency (RF) and microwave applications, several factors come into play. Let’s explore some key considerations:

  1. Dielectric Material:
    • The type of dielectric material significantly impacts the capacitance achievable in a given area.
    • For AC coupling/DC blocking applications with more forgiving requirements, consider Class II dielectrics.
    • For tighter tolerances, such as LC filters, Class I dielectrics are preferable due to their excellent stability and low-loss characteristics.
  2. Additional Factors:
    • Low Loss Tangent: Opt for materials with a low loss tangent to reduce dielectric loss.
    • Uniform, Isotropic Dielectric Constant: Minimize inconsistencies like impedance changes within the circuit.
    • Batch-to-Batch Repeatability: Ensures consistent manufacturing.
    • Smooth Surface Finish: Reduces conductor ohmic losses.
    • High Thermal Conductivity: Important for power electronics circuits.
    • Thermal Expansion: Comply with component and package requirements.

Understanding the capacitance achievable in a given area is an important factor in choosing capacitors for your application. This is ultimately determined by the type of dielectric material that can meet your application requirements for space and capacitance, see Figure 1.  

Figure 1: Comparing dielectric materials by relative filter size and characteristics 

For AC coupling/DC blocking applications where capacitance tolerance and temperature stability requirements are more forgiving, consider Class II dielectrics. In applications with tighter tolerances, like LC filters, Class I dielectrics are a better choice because of their excellent stability and low-loss characteristics.  

A majority of Knowles Precision Devices’ single-layer capacitors (SLCs) are 0.02” x 0.02” (20 mil sq) to 0.03” x 0.03” (30 mil sq). That said, we’ve seen growing demand to lower case sizes to 0.010” x 0.010” (10 mil sq). To meet this demand, Knowles Precision Devices has a range of offerings from a dielectric constant (K) of 9 through 45000. See Figure 2 for Knowles Precision Devices Class I and Class II dielectric materials and relevant specifications.  

Figure 2: Knowles Precision Devices Class I, II and III dielectric material offerings and key specifications to consider 

There are additional factors at play when selecting components for high-frequency, high-performance applications. Substrate properties, like surface finish, and fabrication processes, like metallization, impact the accuracy of line width and gap width. Both of these parameters impact overall circuit performance.

Related

Source: Knowles Precision Devices

Recent Posts

Smolteks CNF MIM Capacitor Break 1 µF/mm²

19.6.2025
1

Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

19.6.2025
1

Advanced Conversion Announces Mass Production of 200C Film Capacitors

18.6.2025
14

VinaTech Supercapacitors: Enhancing Smart Meter Reliability and Efficiency

17.6.2025
7

Chinas MLCC Makers Reach 10% Market Share

16.6.2025
50

Smoltek CNF-MIM Capacitor Commercialization Update

11.6.2025
29

Understanding Switched Capacitor Converters

9.6.2025
70

Exxelia to Present Smart Integrated Magnetics and MML Film Capacitors at SIAE25 

6.6.2025
35

What Track Width To Use When Routing PCB

6.6.2025
30

Knowles Extends Range and Performance of C0G MLCC Capacitors

6.6.2025
26

Upcoming Events

Jun 24
16:00 - 17:00 CEST

Limitations of PSFB converters and improvements by a variable inductor ft. Sam Ben-Yaakov

Jun 24
17:00 - 18:00 CEST

Ultra-Compact and Efficient Switched-Capacitor Power Converters

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version