Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Inductor Resonances and its Impact to EMI

    Developing Low Inductance Film Capacitor using Bode 100 Analyzer

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Würth Elektronik Releases High Performance TLVR Coupled Inductors

    YAGEO Extends Rectangular Aluminum Electrolytic Capacitor Family

    Dr. Tomas Zednicek Vision for Europe 2025 Passive Electronics Market

    Littelfuse Releases Industry-First SMD Fuse with 1500A Interrupting Rating at 277V

    TDK Unveils Industry Highest Rated Current Multilayer Chip Beads

    Vishay Releases Automotive SMD Thick Film Power Resistor for Enhanced Protection Against Short Transient Pulses

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Inductor Resonances and its Impact to EMI

    Developing Low Inductance Film Capacitor using Bode 100 Analyzer

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Würth Elektronik Releases High Performance TLVR Coupled Inductors

    YAGEO Extends Rectangular Aluminum Electrolytic Capacitor Family

    Dr. Tomas Zednicek Vision for Europe 2025 Passive Electronics Market

    Littelfuse Releases Industry-First SMD Fuse with 1500A Interrupting Rating at 277V

    TDK Unveils Industry Highest Rated Current Multilayer Chip Beads

    Vishay Releases Automotive SMD Thick Film Power Resistor for Enhanced Protection Against Short Transient Pulses

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Circulor achieves first-ever mine-to-manufacturer traceability on tantalum from Rwanda

30.1.2019
Reading Time: 7 mins read
A A

Source: Hyperledger.org article

The African country of Rwanda is the world’s biggest supplier of tantalum: a rare mineral used to make capacitors found in devices like smartphones and laptops. Goal of the project is to prove beyond doubt that every bag of tantalum ore from Rwanda was mined, transported, and processed under OECD-approved conditions, without any child or slave labor.
Approach

RelatedPosts

Inductor Resonances and its Impact to EMI

Developing Low Inductance Film Capacitor using Bode 100 Analyzer

Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

  • Engage stakeholders across the supply chain
  • Map the tantalum supply chain
  • Create foolproof new processes
  • Build a blockchain as solid as a rock
  • Prove the system in production

Results

Created by UK-based Circulor, the blockchain-based system to trace tantalum went live in three mines and an ore-sorting facility in Rwanda in fall 2018.

“We’re getting an awful lot of traceability for very little extra work,” says Ray Power, CEO of Power Resources Group, which operates the mines.

The system is designed to slash today’s high cost for compliance, satisfy regulators, reassure consumers, and build revenues for Rwanda.

Background

If you’re like most people, you’ve never heard of tantalum—but you probably have some in your pocket or purse right now.
Tantalum is a rare mineral essential for making capacitors for devices like smartphones and laptops.

A small region of Africa produces 60% of the world’s supply, with Rwanda as the main exporter. But tantalum was sometimes smuggled in from conflict-ridden Congo, where it was mined by children or workers enslaved by warlords.

This led the OECD, U.S., and EU to name tantalum a “conflict mineral” and pass regulations to improve its traceability. Among them are the U.S. Dodd-Frank Act of 2010 and the upcoming EU Conflict Minerals law. Despite these rules, no one had a foolproof way to prove where tantalum actually came from. Until now.

UK-based Circulor created a system that ensures tantalum is mined, transported, and processed under approved conditions with an unbroken chain of custody. Powered by a permissioned blockchain built on Hyperledger Fabric, the system uses facial recognition and QR codes to deliver a world first: mine-to-manufacturer traceability of this vital resource.

Mapping the tantalum supply chain

When he was approached by a mining company in 2016, Circulor CEO and co-founder Doug Johnson-Poensgen had never heard of tantalum himself. But he soon learned everyone from miners in Africa to electric car makers in California has a stake in the mineral.

For example, consumers don’t want their purchases to support slave labor. Developing countries don’t want their exports tainted and export revenues diminished. Consumer electronics makers want to report their supply chains are clear. But African mining companies don’t want to pay all the costs of compliance by themselves.

At the time, Rwandan mines were already using the best tracing methods available: tagging materials and filling in paper forms. This met the letter of the OECD rules but didn’t provide actual traceability. It generated a costly mountain of paper with room for errors or fraud.

Circulor’s team started by mapping every step of the supply chain for tantalum from mine to manufacturer. They realized a blockchain could streamline those steps, but they faced the classic problem of “garbage in, garbage out.”

Any transaction is tamper-proof once it’s written to the blockchain. But that transaction is only as reliable as the original input.

“A blockchain will record an immutable record of custody of a material, the locations it’s traveled through, its composition over time, and all that,” says Circulor’s Johnson-Poensgen. “But if you’re trying to make sure the wrong material never enters the system in the first place, you need processes to make this work.”

You need to tightly control the raw material on the ground to provide accurate data for the blockchain.

Creating foolproof new processes

After the supply chain was mapped, out went the paper checklists and in came new online procedures. With scanners, sensors, weigh scales, and smartphones, these generate reliable data at each step of the global supply chain.

Tantalum goes through many transformations: from gray pebbles, it’s refined to a powder, and then formed into capacitors that are glued to circuit boards and popped into smartphones, laptops, and even electric cars.

“This isn’t a simple track and trace. It’s complicated, because we start with ore and end up with smartphones,” notes Johnson-Poensgen. “Food traceability is much simpler. A banana doesn’t change into a diamond halfway through its journey to a consumer.”

The Circulor team wanted a tamper-proof blockchain as the secure repository for all the system data, but it had to be easy to use by anyone with a smartphone.

To meet these challenges, Circulor created some unique procedures, including the facial recognition system they call URU. The results of each scan are recorded on the blockchain.
And Circulor tracks the ore from mine through refinery with smart contracts.

“The Circulor Protocol is the family of smart contracts that connect one segment of the supply chain to another through a material-processing step,” explains Johnson-Poensgen. “It’s the glue that hold all the different steps together.

“Our system provides both chain of custody and tracing of materials,” he says. “The aim is to use blockchain technology to drive out costs as well as dramatically improve traceability.”

This means manufacturers like Apple and HP will finally have all the proof they need to report to regulators with confidence and to label their products “conflict-free” for consumers.

“Regulations are one thing. The problem was, no one had a foolproof way to prove where their tantalum came from. Until now.”

Step 1: Mining in Rwanda

Everyone entering a mine or selling a bag of ore has their photo taken and ID card scanned with a smartphone. The photos must match the image on file in the Circulor facial recognition system.

Bags of ore are grouped into 70-kg (150-pound) sacks, each with a tamper-proof QR or NFC tag attached. Using GPS, the tags show exactly where that sack comes from. Tags are scanned as sacks are shipped to Kigali, the capital of Rwanda, and on to refineries.

Step 2: Refining in Macedonia

Sacks of ore are weighed before being mixed together. After the ore is refined into powder, the output must equal the weight of the input in a mass balance check.

The refined ore is sealed into trackable containers scanned with a smartphone every time they’re loaded or unloaded from ships or trucks.

Step 3: Manufacturing in USA

The refined tantalum is shipped to a manufacturer. Again, the inputs to each step are weighed and compared with the outputs. Finished batches of capacitors are tagged with GPS or RFID tags.

Step 4: Shipping from USA

Tagged batches of capacitors are scanned with smartphones throughout their journey. Each movement is recorded on the blockchain.

Step 5: Final Assembly in China

Capacitors are glued onto circuit boards assembled into final products. Each product receives a unique serial number. Third-party logistics systems certify the product’s origin, provenance, and ethical sourcing, all recorded on the blockchain.

Step 6: Distribution to consumers

Finished products are shipped to distribution points for consumers around the world. The serial number can be used to trace the materials that went into that product.

Printable case study is available here.

Related

Recent Posts

Developing Low Inductance Film Capacitor using Bode 100 Analyzer

15.5.2025
27

YAGEO Extends Rectangular Aluminum Electrolytic Capacitor Family

15.5.2025
28

Dr. Tomas Zednicek Vision for Europe 2025 Passive Electronics Market

14.5.2025
29

Exxelia Power Film Capacitors Support Critical Systems Across Various Industries

13.5.2025
23

H2-Assisted Thermal Treatment of Electrode Materials Increases Supercapacitors Energy Density

13.5.2025
9

Researchers Present Hybrid Supercapacitor Zn-Ion Microcapacitors

12.5.2025
25

Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

6.5.2025
110

Murata and NIMS Built New Database of Dielectric Material Properties

5.5.2025
59

Tariffs Crush Sales Sentiment in April 2025 ECST Results

5.5.2025
81

Solid State Polymer Multilayer Capacitors For High Temperature Application

2.5.2025
45

Upcoming Events

May 28
16:00 - 17:00 CEST

Power Over Data Line

View Calendar

Popular Posts

  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Inductor Resonances and its Impact to EMI

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • DC-DC Converter Basic Characteristics and Formulas

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version