Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Smiths Interconnect Extends Space-Qualified, High-Reliability Fixed Chip Attenuators 

    Samtec Expands Offering of Slim, High-Density HD Array Connectors

    Bourns Unveils High-Precision Wirewound Resistor with Long-Term Stability

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    Littelfuse Acquires Basler Electric Enhancing High-Growth Industrial Market

    DigiKey Grows Inventory with Over 31K New Stocking Parts in Q3 2025

    Murata Expands Automotive Metal Frame Y2/X1 Safety MLCC Capacitors to 500V

    Source: Semiconductor Intelligence

    October 25 Electronics Production: U.S. vs. Global Changes

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Smiths Interconnect Extends Space-Qualified, High-Reliability Fixed Chip Attenuators 

    Samtec Expands Offering of Slim, High-Density HD Array Connectors

    Bourns Unveils High-Precision Wirewound Resistor with Long-Term Stability

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    Littelfuse Acquires Basler Electric Enhancing High-Growth Industrial Market

    DigiKey Grows Inventory with Over 31K New Stocking Parts in Q3 2025

    Murata Expands Automotive Metal Frame Y2/X1 Safety MLCC Capacitors to 500V

    Source: Semiconductor Intelligence

    October 25 Electronics Production: U.S. vs. Global Changes

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Coupled Inductors in SEPIC versus Flyback Converters

26.8.2025
Reading Time: 5 mins read
A A

prof. Sam Ben-Yaakov in this video provides intuitive explanation of the coupled inductors in SEPIC converters and its comparison to Flyback topology converters.

This presentation introduces an intuitive explanation of the coupled inductors SEPIC (Single-Ended Primary Inductor Converter) converter in comparison to the Flyback topology.

RelatedPosts

Capacitor Self-balancing in a Flying-Capacitor Buck Converter

Over-Voltage Protection Clippers, Clampers, Snubbers, DC Restorers

Efficient Power Converters: Duty Cycle vs Conduction Losses

Overview of Flyback Converter

The Flyback converter is a widely-used topology in power electronics. Its basic configuration includes:

  • Transistor (Switch): Controls the energy transfer.
  • Coupled Inductor (Transformer): Facilitates energy storage and transfer.

Operation:

  • Transistor ON: Current flows through the primary winding of the inductor, storing energy.
  • Transistor OFF: The stored energy is released through the secondary winding to the output load.

Both Continuous Conduction Mode (CCM) and Discontinuous Conduction Mode (DCM) are feasible, depending on the load and design.

further reference: Flyback Converter Design and Calculation

Introduction to SEPIC Converter

The SEPIC topology was developed at IBM and has two primary configurations:

  1. Uncoupled Version: Utilizes two separate inductors, a transistor, a capacitor, and a rectifier.
  2. Coupled Inductors Version: Features coupled inductors, a capacitor, and a rectifier.

Key Characteristics:

  • The presence of a capacitor necessitates a shared ground, making SEPIC a non-isolated topology.
  • Despite structural differences, SEPIC and Flyback share fundamental operational principles.

further reference:

  • SEPIC Converter Design and Calculation
  • SEPIC Converter with Coupled and Uncoupled Inductors

Comparative Analysis of SEPIC and Flyback Topologies

  1. Transfer Ratio:
    • Both topologies exhibit similar voltage transfer ratios.
  2. Operation with Transistor ON:
    • In SEPIC, the capacitor is directly connected to the secondary inductor. The voltage across the primary matches the input voltage.
  3. Operation with Transistor OFF:
    • The current flows from the secondary inductor to the output. The loop voltage sums to zero, indicating no need for capacitor charge redistribution between states.

Impact of Coupling Coefficient

  • Flyback: High coupling coefficients minimize oscillations, but leakage inductance leads to energy losses, reducing efficiency.
  • SEPIC: Operates optimally with slight leakage (coupling coefficient < 1). Leakage energy is recycled, enhancing efficiency and mitigating oscillations.

Simulation Insights

A simulation compared both converters under ideal conditions:

  • Ideal Coupling (Coefficient = 1): SEPIC exhibited smooth operation with minimal oscillations, even with large capacitors.
  • Realistic Conditions (Coefficient = 0.99): Flyback exhibited voltage spikes and oscillations, mitigated by adding snubbers and clamps. SEPIC maintained stable performance without additional components.

RMS Current Comparison

  • SEPIC’s RMS current in the primary inductor is significantly lower than that of the Flyback, contributing to better efficiency.

Key Takeaways

  1. Gain Consistency: Both converters have similar gain characteristics.
  2. Design Flexibility: Flyback allows for variable turns ratios, offering greater output voltage flexibility.
  3. Isolation: Flyback provides isolation; SEPIC does not.
  4. Efficiency: SEPIC exhibits higher efficiency due to recycled leakage energy.
  5. Component Requirements: SEPIC reduces the need for snubbers and clamps, simplifying design.
  6. EMI Performance: SEPIC generates less EMI compared to Flyback.

Conclusion

While SEPIC might seem complex, it offers significant benefits, especially in applications requiring stable, efficient power conversion with minimal EMI. Its similarities to Flyback topology simplify the learning curve, making it an excellent choice for various power management scenarios.

Related

Source: Sam Ben-Yaakov

Recent Posts

Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

30.10.2025
2

Capacitor Self-balancing in a Flying-Capacitor Buck Converter

30.10.2025
1

Vishay Releases Space-Grade 150 W 28V Planar Transformers

29.10.2025
7

How to Select Ferrite Bead for Filtering in Buck Boost Converter

23.10.2025
41

Power Inductors Future: Minimal Losses and Compact Designs

30.10.2025
46

Bourns Unveils Automotive 3 Watt Gate Driver Transformer

22.10.2025
9

Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

30.10.2025
50

Murata Integrates Component Models into Cadence EDA Tools

21.10.2025
46

Bourns Releases High Inductance Common Mode Choke

16.10.2025
24

High Energy Density Polymer Film Capacitors via Molecular and Interfacial Design

15.10.2025
31

Upcoming Events

Nov 4
10:00 - 11:00 PST

Design and Stability Analysis of GaN Power Amplifiers using Advanced Simulation Tools

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

Nov 6
14:30 - 16:00 CET

Self-healing polymer materials for the next generation of high-temperature power capacitors

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version