Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Transformer Design Optimization for Power Electronics Applications

    Microhardness — the Hidden Key to Understanding MnOx Cathode Quality in Tantalum Capacitors

    Samsung to Invest in its Philippine MLCC Facility to Meet Automotive Demand

    Lightweight Model for MLCC Appearance Defect Detection

    DMASS Reports First Positive Signs of European Distribution Market in Q3/25

    TAIYO YUDEN Releases 22uF MLCC in 0402 Size for AI Servers

    Wk 44 Electronics Supply Chain Digest

    Bourns Releases High Current Metal Alloy-based, Multilayer Power Chip Inductors

    Smiths Interconnect Extends Space-Qualified, High-Reliability Fixed Chip Attenuators 

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Transformer Design Optimization for Power Electronics Applications

    Microhardness — the Hidden Key to Understanding MnOx Cathode Quality in Tantalum Capacitors

    Samsung to Invest in its Philippine MLCC Facility to Meet Automotive Demand

    Lightweight Model for MLCC Appearance Defect Detection

    DMASS Reports First Positive Signs of European Distribution Market in Q3/25

    TAIYO YUDEN Releases 22uF MLCC in 0402 Size for AI Servers

    Wk 44 Electronics Supply Chain Digest

    Bourns Releases High Current Metal Alloy-based, Multilayer Power Chip Inductors

    Smiths Interconnect Extends Space-Qualified, High-Reliability Fixed Chip Attenuators 

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Defect-engineered Graphene Improves Supercapacitors

30.8.2016
Reading Time: 2 mins read
A A

source: Energy Harvesting Journal news

Clemson University researchers controllably add nitrogen atoms to graphene to achieve higher energy efficiency of carbon supercapacitors

RelatedPosts

Transformer Design Optimization for Power Electronics Applications

Microhardness — the Hidden Key to Understanding MnOx Cathode Quality in Tantalum Capacitors

Samsung to Invest in its Philippine MLCC Facility to Meet Automotive Demand

Making clean energy a large-scale reality entails the integration of renewable energy generation technologies such as solar cells with energy storage devices. This integration is necessary to mitigate the inherent fluctuations associated with photovoltaics. The output power from solar panels, installed on thousands of rooftops or aligned in a solar power plant, depends on the weather – sunny days will generate excess power while output may be significantly lower on cloudy days.

Energy storage devices such as batteries and supercapacitors can be used as a buffer and smooth out the fluctuations by going online at an appropriate time when the solar panels are producing low power. Although some porous carbon supercapacitors are presently being used, they are not yet ready for large scale integration due to a fundamental challenge: the microscopic distribution of electrons in nanocarbons.

Traditionally, the size of electrode materials in supercapacitors is reduced to nanometers to enable high surface area and more room for storing more amounts of energy. But the microscopic electron distribution in nanocarbons limits the total amount of stored energy through a property called ‘quantum capacitance’. Although a lot of charge could be stored in the pores on nanocarbons due to their high surface area, their inherently low quantum capacitance reduces the net energy that could be drawn from supercapacitors. Contrary to the notion that ‘perfection equals best performance’, Clemson University researchers controllably added nitrogen atoms to graphene to achieve carbon supercapacitors ready for practical applications.

“Defects are often seen as performance limiters. But defects provide new possibilities to overcome otherwise insurmountable barriers,” says Dr. Ramakrishna Podila, Assistant Professor of Physics at Clemson who instigated the study. “All defects are not the same. The micro-environment of defect is critical to tune the properties. In other words, we need to find the perfect imperfection to achieve new properties.”

By doping graphene layers with nitrogen atoms, the team has produced graphene with three different flavors: graphitic, pyridinic, and pyrrolic. The latter two flavors (pyridinic and pyrrolic) add nitrogen atoms in the right configuration to change the microscopic distribution of electrons and thereby increase the quantum capacitance of graphene. Furthermore, they allow the electrolyte ions to access the otherwise closed gallery spaces between the layers in few-layer graphene.

“People often quote Feynman’s famous sentence ‘There is plenty of room at the bottom’; but here, we found plenty of room in the middle between the layers to store more energy,” says Podilla. “We have been engineering defects in nanocarbons to go beyond what the traditional materials can offer. We found that the problems of quantum capacitance can be alleviated when nitrogen atoms are inserted into the graphene lattice at precisely the right positions. Indeed, we are able to extract as much energy as a Li-ion thin-film battery but with two orders of magnitude higher power.”

We are excited with the new developments. We wish to now test doped graphene cells for energy harvesting applications,” hopes Jingyi Zhu, a PhD candidate from Clemson Nanomaterials Center and a co-author on this Advanced Materials paper.

Source and top image: Clemson University

Related

Recent Posts

Microhardness — the Hidden Key to Understanding MnOx Cathode Quality in Tantalum Capacitors

3.11.2025
11

Samsung to Invest in its Philippine MLCC Facility to Meet Automotive Demand

3.11.2025
8

Lightweight Model for MLCC Appearance Defect Detection

3.11.2025
9

DMASS Reports First Positive Signs of European Distribution Market in Q3/25

3.11.2025
5

TAIYO YUDEN Releases 22uF MLCC in 0402 Size for AI Servers

3.11.2025
6

Capacitor Self-balancing in a Flying-Capacitor Buck Converter

30.10.2025
27

Murata Expands Automotive Metal Frame Y2/X1 Safety MLCC Capacitors to 500V

30.10.2025
32

Exxelia 4-Terminal Safety Capacitors Compliant with NF F 62-102 Railway Standard

27.10.2025
32

Samsung Releases Automotive Molded 2220 1kV C0G MLCC

23.10.2025
63

VINATech Offers Smallest 100µF Al-Hybrid Capacitor

23.10.2025
48

Upcoming Events

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

Nov 6
14:30 - 16:00 CET

Self-healing polymer materials for the next generation of high-temperature power capacitors

Nov 11
17:00 - 18:00 CET

Industrial Applications Demand More from Interconnects in Next-Gen Designs

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version