Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Reliability of E-Textile Conductive Paths and Passive Component Interfaces

    Flaked Tantalum Powders: High Capacitance Powders for High Reliable Tantalum Capacitors

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Design of High Precision Integrated Resistive Voltage Dividers

    Textile-Based Antennas

    Space Evaluation Testing on SAW Filter Based on Piezo-On-Insulator Technology

    Samsung Electro-Mechanics Releases 470nF 16V MLCC in 0402 Size

    Beyond 85/85 Lifetime Estimation of PP Film Capacitors in Humid Environments

    Life Cycle Assessment of a Graphene-Based Supercapacitor

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Reliability of E-Textile Conductive Paths and Passive Component Interfaces

    Flaked Tantalum Powders: High Capacitance Powders for High Reliable Tantalum Capacitors

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Design of High Precision Integrated Resistive Voltage Dividers

    Textile-Based Antennas

    Space Evaluation Testing on SAW Filter Based on Piezo-On-Insulator Technology

    Samsung Electro-Mechanics Releases 470nF 16V MLCC in 0402 Size

    Beyond 85/85 Lifetime Estimation of PP Film Capacitors in Humid Environments

    Life Cycle Assessment of a Graphene-Based Supercapacitor

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Development of a New Fast-Lock RF Connector Interface up to W-Band for Space Applications

26.4.2025
Reading Time: 6 mins read
A A

This paper on new fast lock RF interface was presented by Olivier Berenfeld, Radiall SA, France during the 5th Space Passive Component Days (SPCD), an International Symposium held from October 15th to 18th, 2024, at ESA/ESTEC in Noordwijk, the Netherlands. Published under permission from ESA SPCD organizers.

RADIALL and AXON collaborated to develop a new fast-lock RF connector interface for satellite RF systems up to 110 GHz.

RelatedPosts

High-Density PCB Assemblies For Space Applications

Solid State Polymer Multilayer Capacitors For High Temperature Application

Graphene-Based BOSC Bank Of Supercapacitor Cells

The project, funded by ESA, aimed to achieve TRL 4 and involved five work packages, including requirements analysis, design trade-offs, manufacturing, testing, and evaluation.

While the fast-lock system demonstrated robustness and reliability, the high cost and limited market demand prompted a reevaluation of the project’s direction, with a focus on qualifying a 110 GHz solution with a standard 1.0 mm interface for space applications.

Key Points:

  • Market Analysis: No existing space applications for 110 GHz cable assemblies were found, with most available products designed for test and measurement.
  • Fast-lock System Selection: Push and twist (“bayonet”) mechanism chosen for its simplicity, safety, and visibility, with an anti-rotation system to prevent cable twist.
  • RF Line Optimization: Simulations optimized the 1.0 mm RF line, including socket shape, pin-socket gap, and center contact captivation method, to achieve best RF performance.
  • Interface Development: Development and manufacturing of the new RF interface with a fast-locking mechanism, featuring a spring system for pressure between reference planes and manual mating/unmating.
  • Connector Development: Developed truncated flange and 4-hole flange connectors with various contact outputs and adapters.
  • Performance Evaluation: Evaluated connector pairs based on ESCC standards, identifying minor anomalies and comparing RF performances of fast-lock and screw-in versions.
  • Project Conclusion: Fast-lock system is robust, reliable, and easy to use with good RF performance up to 110 GHz, but expensive with no immediate market.
  • Technology Maturity: Coaxial technology at 110 GHz is concrete and promising, currently at TRL7.
  • Next Steps: Qualify a 110 GHz solution with a standard 1.0 mm interface (screw-in) for space applications (TRL8).
  • Market Considerations: Standardization and reliability are crucial for the Test and Measurement market, favoring screw-in interfaces over fast-lock.

Extensive Summary of the Development of a New Fast-Lock RF Connector Interface up to W-Band

The collaboration between RADIALL and AXON, funded by the European Space Agency (ESA), focused on developing a new fast-lock RF connector interface designed to operate effectively up to the W-Band (110 GHz). This development addresses future satellite manufacturer demands for higher frequency applications, following trends from X, Ku, Ka, and Q bands.

Project Structure (Work Packages)

  1. WP1: Space Applications Review & Requirements Benchmark
    • Reviewed existing 110 GHz cable assemblies. Found no current space applications.
    • Identified a lack of fast-lock systems with 1.0 mm connectors.
    • Finalized specifications based on ESA tender requirements.
  2. WP2: RF Interconnection Design Review & Trade-off
    • Evaluated three fast-lock mechanisms:
      • Push-Lock (1 step): Simple but complex mechanisms and higher locking forces.
      • Push & Lock (2 step): Compact with heritage in space but not optimized for very high frequencies.
      • Push & Twist (Bayonet system): Chosen solution due to locking simplicity, safety, and clear visual confirmation of lock status.
    • Anti-rotation systems were implemented to avoid cable twisting.
    • Conducted extensive RF simulations to optimize performance.
  3. WP3: Development & Manufacturing
    • Developed new RF interfaces with fast-lock mechanisms, including:
      • Spring systems for effective pressure without cable damage.
      • Various flanges and connectors to compare fast-lock with traditional screw-in systems.
      • Manufactured sample cable assemblies for evaluation.
  1. WP4: Characterization Tests & Optimization
    • Performed tests based on ESCC standards.
    • Minor anomalies identified with connector pairs, targeted for resolution in industrialization.
    • Fast-lock connectors showed good insertion loss and VSWR but lower RF shielding effectiveness compared to screw-in versions, with performance degradation after repeated bending.
  2. WP5: Limitations, Improvements, & Payload Impact
    • Conclusions:
      • Fast-lock system is robust, reliable, and easy to use.
      • Achieved good RF performance up to 110 GHz, except for RF leakage.
      • High development costs with no immediate market demand for space applications.
      • The traditional screw-in version remains preferable for Test & Measurement markets due to better performance stability and cost-effectiveness.

Final Remarks & Roadmap

  • To reach Technology Readiness Level (TRL) 8:
    • Address RF leakage issues through design improvements.
    • Conduct industrialization and supplier analysis for mass production.
    • Consider whether maintaining two interface types is cost-effective.
  • Next Steps:
    • More relevant to qualify a 110 GHz solution with a standard 1.0 mm screw-in interface for space applications.

Read the full paper:

RADIALL_Fast lock W-BandDownload

Related

Source: ESA SPCD

Recent Posts

Flaked Tantalum Powders: High Capacitance Powders for High Reliable Tantalum Capacitors

29.9.2025
1

Space Evaluation Testing on SAW Filter Based on Piezo-On-Insulator Technology

29.9.2025
10

Pure-Polyimide Flexible Heater for High-Reliability Applications

26.9.2025
10

Passive Components J-STD-075 Process Sensitivity Level Classification And Labeling

25.9.2025
21

Quality Challenges and Risk Mitigation for Passive Components in Harsh Environments

24.9.2025
29

Silicon Capacitors Reliable Performance in Harsh Conditions

24.9.2025
42

Tantalum Capacitor Technology Advantages for Harsh Environment

24.9.2025
46

Thermoset Polymer Dielectric Capacitors for Harsh Environment Applications 

24.9.2025
31

Computer Vision‑Driven Verification of Passive Component Assembly on Space‑Grade PCBs

23.9.2025
25

Samtec Agreed with Molex Second-Source License on High-Speed Interconnects for Data Centers

18.9.2025
18

Upcoming Events

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 8
11:00 - 12:00 CEST

PCB Online Shop – simply “Made in Germany” by Würth Elektronik

Oct 14
16:00 - 17:00 CEST

Smart Sensors, Smarter AI: Building Reliable Edge Systems

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version