Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Rubycon PMLCAP DC‑Link Film Capacitors in Mass Production

    Bourns SSD‑1000A AEC‑Q Digital Current Sensors

    YAGEO High‑Capacitance X7R Automotive MLCC Extensions

    How Metal Prices Are Driving Passive Component Price Hikes

    Modelithics COMPLETE Library v25.8 for Keysight ADS

    Taiyo Yuden Releases 165C Automotive Multilayer Metal Power Inductor in 1608 Size

    Energy-Controlled Structural Evolution of Amorphous Ta₂O₅ in Tantalum Anodes

    Jianghai Vibration‑Resistant Aluminum Capacitors Guidelines for Industrial Electronics

    2025 Top Passive Components Blog Articles

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Rubycon PMLCAP DC‑Link Film Capacitors in Mass Production

    Bourns SSD‑1000A AEC‑Q Digital Current Sensors

    YAGEO High‑Capacitance X7R Automotive MLCC Extensions

    How Metal Prices Are Driving Passive Component Price Hikes

    Modelithics COMPLETE Library v25.8 for Keysight ADS

    Taiyo Yuden Releases 165C Automotive Multilayer Metal Power Inductor in 1608 Size

    Energy-Controlled Structural Evolution of Amorphous Ta₂O₅ in Tantalum Anodes

    Jianghai Vibration‑Resistant Aluminum Capacitors Guidelines for Industrial Electronics

    2025 Top Passive Components Blog Articles

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Electricity 101

23.8.2018
Reading Time: 4 mins read
A A
Electric lighting effect, abstract techno backgrounds for your design

Electric lighting effect, abstract techno backgrounds for your design

Source: Kemet Engineering Center article

by Nick Stephen. What’s scarier than your phone is at 1% battery? When your phone doesn’t start charging after you run for your life to get to a power outlet. Maybe it’s your phone charger or maybe it’s the outlet itself. Have you ever wondered how your devices work once they are plugged in? If the answer is yes then you’re in for a treat, welcome to Electricity 101.

RelatedPosts

Rubycon PMLCAP DC‑Link Film Capacitors in Mass Production

Bourns SSD‑1000A AEC‑Q Digital Current Sensors

YAGEO High‑Capacitance X7R Automotive MLCC Extensions

Before we get started let’s talk about the electrical grid. The electric grid is the network through which the power is generated, transmitted, and distributed to consumers. The electrical grid is comprised of 4 components; generating plants, transmission lines, substations, and distribution lines. The electricity is initially produced at generation plants. Transmission lines are the infrastructures created to transport electricity over long distances. The electricity voltage is decreased or increased at a substation using the help of transformers. Lower voltage of electricity is transported to different consumers through the distribution lines.

Generation, transmission, consumptionFigure 1: Generation, Transmission & Consumption

3 Phase Power

Power is generated and distributed in three phase (3-phase). Before we get into 3-phase, it would be beneficial to know about single phase. If you’re not electrically minded, think about single phase power like riding a bicycle where only one leg (phase) is pushing on one pedal. Clearly, it is not the best way to ride a bike. Single phase is used every day by people because it is the most common household power circuit and powers their lights, TV, etc. Typically there’s one neutral wire, and power flows between the power wire (through the load) and the neutral wire.

What is 3-phase power? 3-phase consists of three AC voltages separated from each other by 120 electrical degrees and most commercial buildings are wired with 3-phase. Another way to look at 3-phase power is as a combination of three single-phase circuits that deliver power in a way that it never falls to zero, the load will always be same at any instant. If we only had a single phase, then there would be instances where the load is not the same at every point. Why not 6-phase, 9- phase, 12- phase or some other number of phases? For most applications, anything more than 3-phase is unnecessary. More phases do not always mean better. Think about how a tripod for your camera has a clear advantage over a monopod. A 6 legged or 9 legged devices to hold your camera is not going to make a difference because a tripod is already “ideal”.

There are two types of circuits used to maintain equal load across the three hot wires in a 3-phase system- Delta and Wye. The delta configuration has the 3-phase connected like a triangle, whereas the wye configuration has all three loads connected at a single neutral point. Delta is mainly used for any large motors or heaters that do not need a neutral. Delta is also used in power transmission because it is expensive to run a fourth neutral wire all those miles. That’s why distribution transformers are wired as Delta- Wye. This creates the neutral that allows the transformer to deliver power for single-phase loads.

WYE, DELTA, 3-phase

Figure 2: 3-Phase Wye & 3-Phase Delta

Electrical Grid

So how exactly does the grid work? After electricity is generated through the whole 3 phase we talked about, the voltage is stepped up at a substation, allowing electricity to be transported over long distances. In case you were wondering the electricity is still AC at this point, and no, AC is not air conditioning! AC stands for alternating current. Alternating current is better than direct current for transmission because it minimizes power loss. You want to lose as little power as possible in your transmission lines. The stepped-up electricity is then transported to different destinations with the help of transmission lines. Transmission lines can be either overhead or underground. Once it reaches its destination, another substation steps down the voltage to a level suitable for distribution lines that deliver electricity to consumers.

Generation, transmission, distribution

Figure 3: Distribution

The substations step down voltages based on the consumer requirements. If you refer to the picture above, we can see that our homes are provided with 120V and 240V. The electronics you plug into the wall have other devices inside to step down the voltage even more to meet the requirements. For example, a full wave rectifier shown below has an input of 230V AC and an output of 5V DC (this is an example of what happens inside your phone charger). During distribution of power, capacitors are used for power factor correction (PFC).

AC to DC converterFigure 4: AC to DC Converter

DC links in AC grids

Dc technology provides a more secure and optimized control of a network’s load flow. It also provides quick power restoration in the event of a blackout. An increasing number of DC transmissions embedded in the AC grid will result in a more controllable and precise power exchange. DC technology can provide a more secure and optimized control of the networks load flow. DC transmissions can compensate for fluctuations in power, voltage, and frequency, making it an ideal technology for stabilizing a power system. More DC links will contribute to reduced system losses, increased transmission capacity and improved power quality. DC links often come in form of capacitors. In electricity, DC links capacitors are either film or ceramic.

 

Related

Recent Posts

Energy-Controlled Structural Evolution of Amorphous Ta₂O₅ in Tantalum Anodes

6.1.2026
41

Towards Green and Sustainable Supercapacitors

30.12.2025
42

Mechano-Chemical Model of Sintered Tantalum Capacitor Pellets

29.12.2025
48

One‑Pulse Characterization of Nonlinear Power Inductors

22.12.2025
77

Reliability Improvement in BaTiO3 MLCCs Using Ni–Sn and Ni–In Alloy Electrodes

19.12.2025
79

Mechanical Testing of Tantalum Anodes to Predict Tantalum Capacitor Quality

17.12.2025
46

Thermistor Linearization Challenges

17.12.2025
53

Coaxial Connectors and How to Connect with PCB

17.12.2025
108

PCB Manufacturing, Test Methods, Quality and Reliability

17.12.2025
75

Upcoming Events

Jan 27
16:00 - 17:00 CET

Simplifying Vehicle Development with Automotive Ethernet and Zonal Smart Switch Technologies

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version