Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Top 10 Connector Vendors by Product Type

    Bourns Releases High‑Q Air Coil Inductors for RF Aplications

    CMSE 2026 Announces Call for Presentations on High-Reliability Military and Space Electronics

    ESA Call for Papers 6th Space Passive Component Days – SPCD 2026

    Würth Elektronik Offers Halogen‑Free EMC Gaskets for Displays and Housings

    Component Distribution Supply Chain January 2026

    Binder Unveils M8 Flange Solder Connectors for Flexible Cabling

    Power Electronics Tools for Passives and Magnetic Designs

    Modelithics Releases Component Model Library for SIMULIA CST Studio Suite

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Top 10 Connector Vendors by Product Type

    Bourns Releases High‑Q Air Coil Inductors for RF Aplications

    CMSE 2026 Announces Call for Presentations on High-Reliability Military and Space Electronics

    ESA Call for Papers 6th Space Passive Component Days – SPCD 2026

    Würth Elektronik Offers Halogen‑Free EMC Gaskets for Displays and Housings

    Component Distribution Supply Chain January 2026

    Binder Unveils M8 Flange Solder Connectors for Flexible Cabling

    Power Electronics Tools for Passives and Magnetic Designs

    Modelithics Releases Component Model Library for SIMULIA CST Studio Suite

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

EMC with Electromechanical Inter-Connections

1.7.2025
Reading Time: 5 mins read
A A

This Würth Elektronik webinar focuses on the basics of electromagnetic compatibility (EMC) related to the use and applications of electromechanical inter-connection components.

What is electromagnetic compatibility, what does it have to do with a flower and a bee, and how can I apply the knowledge conveyed to use it in my application?

RelatedPosts

Würth Elektronik Offers Halogen‑Free EMC Gaskets for Displays and Housings

Würth Elektronik Developed a Custom Transformer for Active Hand Orthosis

Würth Elektronik Introduces Product Navigator for Passive Components

What impact does the layout have on my electromagnetic compatibility, and what electromechanical inter-connection components can I use to improve this compatibility?

Electromagnetic Compatibility (EMC) with Electromechanical Connectors

This presentation delves into the critical subject of Electromagnetic Compatibility (EMC) within the context of Electromechanical Connectors. It explores fundamental principles, coupling effects, layout concepts, signal integrity, and shielding methods necessary for achieving optimal EMC performance in electronic applications.

1. Introduction

Electromagnetic Compatibility (EMC) compliance is not just a design consideration but a legal mandate across various regions. Its importance is underscored by stringent regulatory standards governing radiated emissions, immunity, Electrostatic Discharge (ESD), and conducted emissions. This document aims to provide an in-depth technical overview of EMC principles, focusing on practical implementation in electronic systems.

2. Fundamentals of EMC

2.1 Definition and Importance

EMC ensures that electronic systems operate without interference from or causing interference to other systems within their environment. Key EMC parameters include:

  • Radiated Immunity and Emission
  • Conducted Immunity and Emission
  • Electrostatic Discharge (ESD) Compliance

2.2 Regulatory Framework

EMC guidelines vary globally but maintain comparable thresholds. For instance, Austria’s EMC directives align closely with those in Spain, ensuring uniform compliance across EU nations.

3. Coupling Mechanisms

EMC issues arise from several coupling effects:

  • Capacitive Coupling: Dominant where electric fields prevail, leading to parasitic capacitance between conductors.
  • Inductive Coupling: Arises from magnetic fields inducing currents in adjacent conductors.
  • Galvanic Coupling: Occurs when two circuits share a common return path, causing interference.
  • Electromagnetic Wave Coupling: Involves near-field dominance of either electric or magnetic components.

4. Layout Concepts and Signal Integrity

4.1 Layer Design Optimization

Effective EMC design starts with PCB layout consideration:

  • Continuous Ground Planes: Minimize impedance and maintain signal integrity.
  • Minimizing Loop Areas: Reduces antenna effect, thus lowering EMI susceptibility.
  • Via Placement Strategies: Avoid unnecessary layer transitions to prevent impedance mismatches.

4.2 Transmission Line Theory

Signals prefer paths of least impedance, not necessarily the shortest physical route. Design considerations include:

  • Characteristic impedance matching
  • Return path continuity
  • Avoiding split ground planes

4.3 Filtering Techniques

Filters (e.g., common mode chokes, capacitors) are crucial for suppressing noise but should be complemented with robust layout practices for maximum effectiveness.

5. Shielding Design Principles

5.1 Purpose of Shielding

Shielding mitigates radiated emissions and improves immunity. Effective shielding requires:

  • Correct material selection (e.g., tin-plated, nickel-plated)
  • 360° contact around connectors
  • Avoiding galvanic corrosion between dissimilar metals

5.2 Grounding Strategies

Shield grounding can be applied:

  • Single-Ended Grounding: Preferred for high-impedance circuits.
  • Double-Ended Grounding: Effective for mitigating common-mode currents.
  • Capacitive Grounding: Combines benefits of both, reducing DC ground loops while maintaining high-frequency noise suppression.

6. Practical Considerations and Case Studies

6.1 Real-World EMC Failures

Examples highlight the effects of poor grounding, improper shielding, and suboptimal layout designs. Corrective actions include:

  • Adding ground vias
  • Improving connector grounding
  • Re-routing critical signal traces

6.2 EMC Testing and Validation

Testing environments (e.g., EMC chambers) simulate real-world conditions to validate compliance. Key measurements include:

  • Conducted and radiated emissions
  • Susceptibility to external electromagnetic fields

7. Conclusions and Recommendations

Successful EMC compliance integrates thoughtful design, robust layout practices, effective filtering, and strategic shielding. Continuous learning and adaptation to emerging standards are essential for sustained performance.

Related

Source: Würth Elektronik

Recent Posts

Coaxial Connectors and How to Connect with PCB

17.12.2025
212

PCB Manufacturing, Test Methods, Quality and Reliability

17.12.2025
123

Murata Releases World’s First Inner Cavity-Structure Ultra-Low-Loss LCP Flexible Substrate

10.12.2025
108

Connector PCB Design Challenges

3.10.2025
67

Panasonic Industry to Double Production of MEGTRON PCB Materials

15.9.2025
70

Glass Core Technology Breakthrough Potential for High-Speed Interconnects

5.1.2026
175

What Track Width To Use When Routing PCB

6.6.2025
121

Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

15.5.2025
65

High-Density PCB Assemblies For Space Applications

2.5.2025
85

Upcoming Events

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

Mar 3
16:00 - 17:00 CET

Cybersecurity at the Eleventh Hour – from RED to CRA – Information and Discussion

Mar 21
All day

PSMA Capacitor Workshop 2026

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How Metal Prices Are Driving Passive Component Price Hikes

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • Degradation of Capacitors and its Failure Mechanisms

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version