Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    January 2026 Interconnect, Passives and Electromechanical Components Market Insights

    Passive Components in Quantum Computing

    0603 Automotive Chip Varistors as TVS Diode Replacements, TDK Tech Note

    Miniaturization of MLCCs and Electrolytics, KAVX Tech Chat

    Exxelia Offers Custom Naval Transformers and Inductors

    Researchers Demonstrated 32nm Aluminum Vacuum Gap Capacitor

    Conductive Polymer Capacitor Market and Design‑In Guide to 2035

    TDK Releases High Performance 105C DC Link Film Capacitors

    YAGEO Offers Automotive MOVs for EV and AI power

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    January 2026 Interconnect, Passives and Electromechanical Components Market Insights

    Passive Components in Quantum Computing

    0603 Automotive Chip Varistors as TVS Diode Replacements, TDK Tech Note

    Miniaturization of MLCCs and Electrolytics, KAVX Tech Chat

    Exxelia Offers Custom Naval Transformers and Inductors

    Researchers Demonstrated 32nm Aluminum Vacuum Gap Capacitor

    Conductive Polymer Capacitor Market and Design‑In Guide to 2035

    TDK Releases High Performance 105C DC Link Film Capacitors

    YAGEO Offers Automotive MOVs for EV and AI power

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

EMI Suppression by PP Film Capacitor in OBC Automotive Application

8.8.2022
Reading Time: 5 mins read
A A

Meeting the emission requirements of regulatory agencies becomes more and more complex for the designers, and EMI suppression capacitors play a crucial role. They are required to be miniaturized, but at the same time meet high-reliability requirements under critical electrical and environmental conditions. Kemet application note shows polypropylene (PP) film capacitor (KEMET R53 series) design considerations in OBC EMI input filter as a typical application example.

One of the most enduring trends in the electronics industry is miniaturization. Power electronic designers are targeting to increase conversion efficiency by using WBG semiconductor devices. WBG devices can operate at high switching frequencies and high temperatures. Their use allows reducing the size of passive components bringing an overall more compact design and increasing power density volumes of the converters, thus making miniaturization mandatory. WBG devices also operate with extremely high voltage slew rates producing more high-frequency emissions.

RelatedPosts

Tantalum Capacitor History

Understanding the Influence of ESR and Ripple Current for the Capacitor Selection

Resonant OBC Capacitors

If electronic components are required to be more and more miniaturized, most of the applications linked to the latest market trends face the challenge of operating under severe environmental conditions without compromising on reliability and long life.

One perfect example is represented by the onboard charger (OBC) application below – see Figure 1.

Figure 1. Typical onboard charger (OBC) block design

Designers need to ensure that their products pass the THB evaluation. Emission certification has encountered several challenges. In some applications like the Onboard Charger, many EMI capacitors are required in the input stage to meet the emission requirements. Space is always limited in these applications, and designers are looking for miniaturized capacitors that meet the requirements of the AEC-Q200 and the THB highest grades.

PP Film Capacitors Capabilities in Harsh Environmental Conditions

A well-accepted accelerated life test standard for active and passive components in the electronics industry is the Temperature-Humidity-Bias (THB) test, with levels of 85°C and 85% relative humidity under AC or DC bias conditions. For many years, designers in various industries (including automotive, energy, consumer, and industrial) have used this test to ascertain the reliability of their final products for up to 25 years of operation under severe climatic conditions. More recently, the THB test has been recognized as an IEC standard for EMI suppression film capacitors. The capacitor manufacturers must indicate the THB category for their certified solutions.

The table below shows the different Temperature-Humidity-Bias (THB) testing conditions per IEC Standard.

Table 1: 60384-14 Am. 1 Ed.4 Fixed capacitors, .2 Humidity Robustness Grades
Table 2: Capacitance, Dissipation Factor, and Insulation Resistance requirements

PP Film Capacitor KEMET R53 X2 series exceeds previous solutions and meets the IEC-60384-14 humidity robustness test with a Class IIIB classification. R53 achieves 1,000 hours during an accelerated life test under 85°C and 85% relative humidity at its rated AC (310 Vac) and DC (560Vdc) voltages.

Application Example

In the following example, we analyze the requirements of X2 rated capacitors for the input EMI filter of a 3-phase 11 kW OBC. The customer has designed a multi-stage input EMI filter with nine X2 capacitors – see Figure 2.

Figure 2. Multi-stage input EMI filter with nine X2 capacitors

The capacitance required is 4.7 μF for every capacitor. The voltage applied across the capacitors during operation is 240 Vac at 50 Hz.During operation, the maximum ambient temperature is 100°C, and the ripple current is 2 A at a frequency of 60 kHz. Due to the high reliability required, customers need an AECQ-200 and THB Grade IIIB qualified solution. The tolerance of the capacitance is required to be ±10%. One additional requirement is a free or low halogen content solution.

Miniature metallized polypropylene film capacitor encapsulated with self-extinguishing resin, KEMET R53 X2 310 Vac series is the ideal choice for this application. More precisely, the PN R533R447000P2K meets the requirements for capacitance, tolerance and has a low halogen content.

To verify the current capability of the selected solution, customers can use the KEMET online simulation tool, KSIM. The ambient temperature can be set at 100°C, as per the worst-case application scenario.

As it is visible on the KSIM Ripple Voltage and Current plot below in Figure 3., the ripple current capability of the R533R447000P2K exceeds the design’s required value of 2 A at the frequency of 60 kHz and the ambient temperature of 100°C.

Figure 3. KSIM ripple voltage and current of the R533R447000P2K PP film capacitor

Additionally, it is essential to underline that the R53 solution occupies 25% less PCB area than similar solutions from the competition.

Summary

In the above example, we analyzed how the polypropylene film capacitors – specifically the KEMET R53 series – can meet the highest THB class in a miniaturized size. These key characteristics bring significant advantages to the designers in terms of space occupation on the board. Additionally, the R53 AEC-Q200 qualification makes this series an ideal EMI suppression solution for automotive applications.

Related

Source: KEMET

Recent Posts

Passive Components in Quantum Computing

22.1.2026
19

0603 Automotive Chip Varistors as TVS Diode Replacements, TDK Tech Note

21.1.2026
13

Miniaturization of MLCCs and Electrolytics, KAVX Tech Chat

21.1.2026
26

Researchers Demonstrated 32nm Aluminum Vacuum Gap Capacitor

20.1.2026
26

Conductive Polymer Capacitor Market and Design‑In Guide to 2035

20.1.2026
69

TDK Releases High Performance 105C DC Link Film Capacitors

19.1.2026
43

YAGEO Offers Automotive MOVs for EV and AI power

19.1.2026
26

Vishay Extends Aluminum Capacitors Rating Up to 600 V for DC Links

15.1.2026
34

Würth Elektronik Introduces Product Navigator for Passive Components

14.1.2026
74

Upcoming Events

Jan 27
16:00 - 17:00 CET

Simplifying Vehicle Development with Automotive Ethernet and Zonal Smart Switch Technologies

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

Mar 21
All day

PSMA Capacitor Workshop 2026

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How Metal Prices Are Driving Passive Component Price Hikes

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Degradation of Capacitors and its Failure Mechanisms

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version