Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Murata Releases In-vehicle Compact Crystal in 2016 Size

    Vishay Releases Industrial-Grade 3/8 Square Single-Turn Cermet Trimmer

    July 2025 Interconnect, Passives and Electromechanical Components Market Insights

    Samsung Electro-Mechanics Focuses MLCCs on AI servers and Automotive

    Modelithics Library Expands with 120 New Models

    Understanding Inductor Dot Markings and Their Application in LTspice

    Exxelia Offers High-Q RF Microwave Capacitors for High Reliability Applications

    Premo Releases PLC Transformer for EV and Smart Grid Applications

    Wk 29 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Murata Releases In-vehicle Compact Crystal in 2016 Size

    Vishay Releases Industrial-Grade 3/8 Square Single-Turn Cermet Trimmer

    July 2025 Interconnect, Passives and Electromechanical Components Market Insights

    Samsung Electro-Mechanics Focuses MLCCs on AI servers and Automotive

    Modelithics Library Expands with 120 New Models

    Understanding Inductor Dot Markings and Their Application in LTspice

    Exxelia Offers High-Q RF Microwave Capacitors for High Reliability Applications

    Premo Releases PLC Transformer for EV and Smart Grid Applications

    Wk 29 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Empower Announces E-CAP™: The Highest Performance, Smallest Size, and Most Configurable Capacitor Technology Platform

13.7.2022
Reading Time: 3 mins read
A A

Empower Semiconductor, the world leader in Integrated Voltage Regulators (IVR), today announced a breakthrough with the highest performance, most configurable, and smallest commercially available range of capacitors. E-CAP™ is a vastly superior performing capacitor, far exceeding the semiconductor industry’s previously leading Multi-Layer Ceramic Capacitors (MLCC).

The capacitor is one of the most basic and fundamental components in electronics needed for energy storage and supply voltage filtering.  The capacitor industry has not progressed nearly at the rate that all other electronic technologies have or as the semiconductor world needs.  Currently the leading technology is in MLCCs, but they are space limiting, inefficient, unreliable, and low performing.  Empower Semiconductor is changing all of that with the introduction of E-CAP™. It is the most exciting advancement for capacitors in decades as it enables new possibilities for today’s applications due to the incredible size reduction, performance increase, and improved reliability.

RelatedPosts

Empower’s Low ESL 1pH Silicon Capacitor Meets Tight AI Chip Requirements

Empower E-CAP Silicon Capacitors vs MLCC

Empower Boost Silicon Capacitor Performance 

“We like to achieve power management innovation at Empower and our team always targets knocking down technology barriers to enable the next generation of applications.  We have had tremendous customer demand and interest in the game-changing technology of the Empower IVR™ power ICs and now, once again, with our breakthrough of re-imagining the capacitor” said Steve Shultis, Senior Vice President WW Sales and Marketing at Empower Semiconductor.  “During the development of our EP70XX IVR, we determined that off-the-shelf capacitor technology was not good enough for demanding applications. As a result, we re-designed it with the performance we required in size and flexibility.  We are excited to make this technology available to our partners.”

With game-changing capacitor density and flexibility, E-CAP™ technology allows for groups of varying capacitor values and sizes to be integrated onto a single die. Space critical applications that cannot afford to have a sea of capacitors spaced out can be realized with E-CAP™.  Height limited applications are also addressed with the capability of much less than 100µm in thickness.  This tiny die format allows for footprints that are 80% smaller than equivalent MLCC based solutions.

E-CAP™ technology features superior stability with no DC or AC bias de-rating, no temperature de-rating, and no significant effects of aging. Combined with the ultra-low ESL (15pH), E-CAP™ provides a highly simplified and reliable solution to the system designer.  This highly differentiated high-performance technology is available in configurations up to 8.4µF.

Empower’s EP70XX IVR family, which is known for its superior performance and unmatched power density, was the first application for E-CAP™. Empower has mastered the expertise of leveraging the superior characteristics of the technology to provide its size benefits to a variety of implementations such as die, package, and PCB substrates. The performance benefits allow higher power efficiency to be achieved due to the superior voltage filtering for better SoC/CPU voltage accuracy during load transients

E-CAP™ opens up demanding new applications in IoT, wearables, mobile, and processors where size, performance, and flexibility are essential.  

Related

Source: Empower

Recent Posts

Samsung Electro-Mechanics Focuses MLCCs on AI servers and Automotive

22.7.2025
17

Modelithics Library Expands with 120 New Models

22.7.2025
4

Exxelia Offers High-Q RF Microwave Capacitors for High Reliability Applications

21.7.2025
20

Rubycon Extends Capacitance of Polymer Hybrid Aluminum Capacitors

16.7.2025
63

VINATech Partner with ONiO to Develop Batteryless IoT Power Architecture

16.7.2025
22

Murata Announces Mass Manufacturing of World’s First 0402 47µF MLCC

10.7.2025
63

VINATech Supercapacitors Enhance Automotive Safety with Reliable E-Latch Emergency Power

7.7.2025
58

Exxelia Unveils Advanced Components for the Medical Device Industry

9.7.2025
57

YAGEO Releases First to Market 750V Aluminum Capacitors

30.6.2025
61

Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

30.6.2025
34

Upcoming Events

Jul 29
16:00 - 17:00 CEST

Impact of Elevated Voltage and Temperature on Molded Power Inductors in DC/DC converters

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version