Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    Würth Elektronik Offers Accessory Humidity Sensor Filter Cap

    Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

    Vishay Releases High Saturation 180C Automotive Inductors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Bourns Unveils High Reliability Compact Micro Encoders

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    Würth Elektronik Offers Accessory Humidity Sensor Filter Cap

    Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

    Vishay Releases High Saturation 180C Automotive Inductors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Bourns Unveils High Reliability Compact Micro Encoders

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Energy Harvesting is not Fiction Anymore

26.10.2020
Reading Time: 7 mins read
A A

Source: EPCI PCNS e-Symposium paper

by Lorandt Foelkel M.Eng; Würth Elektronik eiSos

RelatedPosts

Radiation Tolerance of Tantalum and Ceramic Capacitors

TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

presented by Paul Le Nezet at the 2nd PCNS 10-13th September 2019, Bucharest, Romania as paper 2.1.

ABSTRACT

The paper introduces overview of state of the art on energy harvesting. It discus what type of ambient energies are available, what are the challenges in converting (& storing) these energies into usable energy and showing examples of real life use cases demonstrating that Energy Harvesting has already progressed from the laboratory to commercial applications.

 

INTRODUCTION

Our environment is changing and everything is becoming “electronified”. Our glasses, our hand gloves, shirts, shoes etc., can be connected already today with our smartphones and can send commands to the machinery surrounding us. We want this comfort, and we are all looking forward to having Smart Homes. The point is, we’ve already built our houses, and we did not implement LAN CATx cables to our coffee machines or refrigerators; even all our lights don’t use PoE (Power over Ethernet).

If you build a new house and want to implement these data cables, you will not think twice about it due to the increase in cost. The alternative solution is to use wireless communication, but, at the same time, we don’t want to live in electro-smog, which all these devices are continuously emitting. Those devices should transmit only on request. Furthermore, the efficiency should not be negatively influenced, and we should all continue to look for ENERGY STAR certified devices.

We could use Wi-Fi in all those devices, and that could be the simplest and easiest way. However, the cost of implementation would be quite high, and additional technical knowhow for maintenance from the user’s side would be required. To solve this situation and to be cost effective, the design engineer will likely decide to use a proprietary SRD (Short Range Devices) system, where the ISM (Industrial, Scientific and Medical) Band is used.

ENERGY HARVESTING – OVERVIEW

Energy Harvesting = Energy for free?

Energy harvesting has recently become a topic of much discussion with its potential to self-power autonomous devices for wearables, medical devices and for IoT (the Internet of Things). Examples of real life use cases demonstrating that Energy Harvesting has already progressed from the laboratory to commercial applications. In general we need devices that are:

  • Wireless (avoid power and communications cables)
  • Totally autonomous
  • Highly reliable with backup battery lifetime up to 15~20 years

We have to consider that the laws of physics are still valid. But wasted energy are everywhere, we just need to find them, convert them (harvest), transform them into electrical energy, store it for the time when not used and recall it when needed.

BASIC CONSIDERATIONS

First Step

We have to evaluate two system requirements as the first step:

  1. calculate the total energy demand for your system
  2. watch out for your peak energy demand
Figure 1 load cycle diagram

 

Vs: supply voltage
tp,i: pulse duration
Ic: continuous current
ton: system on time
Ip: pulsed current
DC: sequence duty cycle

Second Step

  • consider the source capabilities
  • check multiple source availability (solar, thermo, motion, chemical… etc.
  • watch out for the stability over the time (use a data logger)

Third step:

  • choose the right harvester (transducer)
  • build the right voltage converter (source impedance matching)
  • consider an energy storage for back up
    • capacity bank
    • supercaps
    • ultracaps (Supercap/Lithium-Ion)
    • Li-Pol rechargeable

WHERE TO FIND “FREE ENERGY”

Typical energy harvester output power

  • RF: 0.1µW/cm²
  • Vibration:    1mW/cm²
  • Thermal:  10mW/cm²
  • Photovoltaic: 100mW/cm²

Typical energy harvester voltages

  • RF: 0.01mV
  • Vibration: 0.1 ~ 0.4 V
  • Thermal:   0.02 ~ 1.0 V
  • Photovoltaic:  0.5 ~ 0.7 V typ./cell

 

Figure 2 Energy harvesting resources versus requirements

 

EXAMPLES OF ENERGY HARVESTER APPLICATIONS

Chip manufacturers [3] have introduced a new generation of processors to the market, which already have the built-in RF module in the chip itself. One example is an ARM Cortex M4 CPU platform, which can be used with up to a 48 MHz clock, and the RF stage can operate from 145 MHz to 1050 MHz for transmission (Rx/Tx).

This solution is amazing, has low current requirement, and can operate with just 40 nA@3V in Sleep Mode. In case of transmission, the current is 18 mA @ +10 dBm. At this point, we can start to harvest the energy from the ambient environment for the application, and power our device. For such a solution, a power converter manufacturer [4] developed a new chip, which is able to harvest from multiple sources. See Figure 3.

 

Figure 3 – Energy harvester demo board based on the Linear technology LTC3331 with Solar and TEG harvester

It can use a piezo or inductive harvester if we have movements/vibration; in case of temperature differences, we can harvest from a TEG (Thermo Electric Generator); or we can use the indoor solar input, and harvest the light from the ambient. All that, with just one single dc/dc converter chip. If we did harvest enough energy to power, and the harvested energy is still present, we can store it into a capacity bank with the same chip, then into a Supercap (balancer in chip), or even charge a Li-Ion battery. An additional input, for a backup battery, is also available in the same chip. If you want to try your first steps designing self-powered electronics, there are few kit’s available [5]. Now, with only 2 ICs, we can realize many projects and most ingenious self-powered devices with no maintenance at all.

Self-Powered Electronics

In case that are problems with energy & voltage levels & their sporadically, how can be solved. Much of the energy stored can be lost through leakage. Which tools/evaluation kits are available to develop self-powered electronics? New low power converter IC’s are developed which can be powered
from multiple harvester at same time and manage the energy to power extreme low power microprocessors which have RF modules build in and can communicate wireless and could be totally autonomous powered.

Imagine a 50 MHz micro Processor which is powered just from your body heat (TEG) or shaking few grams in your hand (electromagnetic harvester/transducer), this is enough energy to harvest than measure and display on a LCD the ambient temperature or to execute complex commands.

 

Figure 2 Microprocessor board with E-Ink display and sensors

 

Figure 3. Schematic of solar and piezo harvesting with power management and backup battery

 

SUMMARY & CONCLUSION

Today they are new low power converter IC’s developed which can be powered at the same time from multiple harvested sources and manage the energy to supply very low power microprocessors which have already RF modules build in and can communicate wirelessly. Such devices, whatever IoT or just sensors, could be designed and build in such way that never need maintenance for battery change or even access to grid and can be totally autonomous powered from environment.

REFERENCES

  1. Lorandt Foelkel. Wurth Elektronik eiSos; “it” Intereference Technology https://interferencetechnology.com/energy-harvesting-not-fiction-anymore
  2. Lorandt Foelkel. Wurth Elektronik eiSos, all-electronics.de (German print media): https://www.all-electronics.de/technologiebotschafter-foelkel-wuerth
  3. Silicon Labs: EZR32™ Wireless MCUs with 142 MHz – 1050 MHz RF frequency range App Note http://www.silabs.com/products/wireless/proprietary/ezr32-wonder-gecko-sub-ghz
  4. Linear Technology: LTC3331 – Nanopower Buck-Boost DC/DC with Energy Harvesting Battery Charge App Note http://www.linear.com/product/LTC3331
  5. https://www.we-online.com/harvest

 

 

more 2nd PCNS symposium technical papers can be viewed and downloaded in pdf from EPCI Academy e-Proceedings:

Related

Recent Posts

Radiation Tolerance of Tantalum and Ceramic Capacitors

7.8.2025
15

Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

6.8.2025
14

Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

6.8.2025
10

How to Calculate the Output Capacitor for a Switching Power Supply

6.8.2025
16

SCHURTER Releases Chip Fuse for ATEX and Precision Applications

4.8.2025
9

Additive Manufacturing of Mn-Zn Ferrite Planar Inductors

4.8.2025
11

Evaluation and Modeling of Supercapacitors for Reliability of Lifetime Predictions

4.8.2025
17

YAGEO Offers High-Performance Diplexers for Dual-Band Wi-Fi 6E/7Integration

30.7.2025
5

Würth Elektronik Expands MagI³C with Variable Step-Down Modules

30.7.2025
22

KYOCERA AVX Releases 600MHz Band71 Compact SAW Duplexer

30.7.2025
8

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version