Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samsung Electro-Mechanics Releases High-Capacitance MLCCs for AI Server Applications

    Samsung Electro-Mechanics Releases 165C Automotive 0806 Size Power Inductors

    Coupled Inductors Circuit Model and Examples of its Applications

    Würth Elektronik Introduces LTspice Models for ESD Products

    Capacitor Ripple Current Testing: A Design Consideration

    TDK Releases 0201 High-Frequency Smallest Inductors

    Coilcraft Extends Air Core RF Inductors

    Bourns Releases Automotive 1W Flyback Transformer

    Wk 20 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samsung Electro-Mechanics Releases High-Capacitance MLCCs for AI Server Applications

    Samsung Electro-Mechanics Releases 165C Automotive 0806 Size Power Inductors

    Coupled Inductors Circuit Model and Examples of its Applications

    Würth Elektronik Introduces LTspice Models for ESD Products

    Capacitor Ripple Current Testing: A Design Consideration

    TDK Releases 0201 High-Frequency Smallest Inductors

    Coilcraft Extends Air Core RF Inductors

    Bourns Releases Automotive 1W Flyback Transformer

    Wk 20 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Enhancing Supercapacitor N-doped Carbon Electrode by Hydrothermal Treatment in Ammonia

27.3.2024
Reading Time: 5 mins read
A A

Researchers from Barrio Universitario, Chile published their study of supercapacitor N-doped carbon electrode enhancement by hydrothermal treatment in ammonia in Journal of Power Sources.

Abstract

This study demonstrates that ammonia concentration when doping carbons using hydrothermal treatment has crucial impact on textural properties. The latter translates into an improvement of the electrochemical performance of carbon materials, when used into electrochemical capacitors, especially at high-rate performance.

RelatedPosts

Samsung Electro-Mechanics Releases High-Capacitance MLCCs for AI Server Applications

Samsung Electro-Mechanics Releases 165C Automotive 0806 Size Power Inductors

Coupled Inductors Circuit Model and Examples of its Applications

Nitrogen-doped carbons were synthesized by subjecting tannin to hydrothermal carbonization in ammonia solutions of varying concentrations. After carbonization and CO2 activation, the as-produced activated carbons (ACs) were tested as electrodes for electrochemical capacitors in symmetric configuration using 1 M H2SO4 as aqueous electrolyte. Interestingly, ammonia concentration during the hydrothermal synthesis step did not significantly affect the final N content (ca. 3 and 4 at. %) nor the nitrogen and oxygen functionalities on the surface.

However, the use of ammonia had crucial impact on the textural properties developed by CO2 activation, and therefore on the electrochemical performance of the ACs. The best-performing N-doped AC showed specific electrode capacitance values, based on carbon material, of 212 F g−1 at 0.5 A g−1 and outstanding capacitance retention of ca. 71 % at 40 A g−1. It also showed high cycling stability, with capacitance retention of ca. 96 % after 30,000 cycles. Furthermore, this AC outperformed similar reported materials, achieving a specific energy of 4.6 W h kg−1 at 12.1 kW kg−1.

Introduction

The increasing use of renewable energy sources, the rise of electromobility, and the advances in the development of wireless devices used in our daily lives have significantly contributed to the growing demand for efficient energy storage systems. Among these, electrochemical energy systems, such as batteries and electrochemical capacitors (ECs) have emerged as key components [[1], [2], [3]]. While batteries store energy by means of chemical reactions involving the transformation of chemical bonds through electrochemical redox reactions, ECs store charge by a physical process, namely the accumulation of electrostatic charge at the electrode/electrolyte interface [4,5]. As a result, the EC storage process is rapid and highly reversible, as it involves no chemical or phase change. Consequently, the charge/discharge cycle can be repeated over a long period with minimal impact on the performance of the electric device. Therefore, a major advantage of ECs is their extended lifespan, as they can withstand up to 20,000 charge-discharge cycles with a minor drop of less than 10 % in terms of performance retention. In contrast, batteries have a lifespan ranging from 500 to 3000 cycles [6]. However, ECs suffer from a notable drawback: their low specific energy, which prevents them from storing large quantities of electrochemical energy when compared with batteries.

Since the early 2000s, the scientific community has devoted increasing efforts to improve the specific energy and power of ECs [1,7]. The forefront of research and development in this field has witnessed the adoption of several key approaches, namely: (i) tailoring the structure of electrode materials to optimize ion transport and adsorption according to electrolyte properties [8,9]; (ii) widening the potential window of the working cell using novel electrolytes [10,11]; and (iii) incorporating specific electroactive molecules to introduce redox contributions [12,13].

In this context, activated carbons (ACs) have been widely used as the main material for EC electrodes due to their ability to be tailored in terms of porosity and surface chemistry to meet specific requirements [14]. In addition, ACs can be synthesized from a variety of raw materials, including, but not limiting to, coals, petroleum coke, polymeric materials, and various forms of raw or waste biomass [[15], [16], [17], [18]]. In particular, tannins, based on polyphenolic compounds often extracted from tree bark, have proven to be excellent precursors for the development of carbon-based electrodes for ECs [9,[19], [20], [21], [22], [23]]. Tannins indeed possess an excellent carbon yield, about 45 %, and an inherent ability for auto-condensation reactions, making them an attractive option for the production of high value-added materials [23,24]. Furthermore, the presence of –OH groups enables high reactivity, allowing the incorporation of other atoms or functionalities [22,25]. In this context, the amination of tannins using ammonia by hydrothermal carbonization (HTC) has been explored to achieve in situ N-doping [26].

Considering the amination of a single hydroxyl group in the flavonoid unit, the N content of tannin-derived materials should be 4.8 wt% [25,26]. It is expected that tannin amination can proceed beyond the usual stoichiometry by subjecting it to an HTC process using concentrated ammonia solutions. However, most research using ammonia during the HTC step does not vary the ammonia concentration. On the other hand, to obtain optimal performance in ECs [27], the obtained materials need to be activated either by chemical activation (e.g. using KOH) or by physical activation (e.g. using CO2). While the former results in ACs with higher surface areas [28], the latter enhances wettability and pore connectivity, leading to ECs with superior performance, particularly for high-power applications [29].

In this study, we focused on the synthesis of N-doped ACs derived from pine bark tannins, using ammonia solutions as hydrothermal medium. The resulting hydrochars were then carbonized and were physically activated using CO2. This study is mainly concerned with the influence of N content on the textural and chemical surface properties after CO2 activation and, ultimately, on their performance as electrodes for ECs.

Synthesis of carbon materials

Ammonia solution (NH4OH, 26.2 wt % in water, Merck), sulfuric acid (H2SO4 1 M aqueous solution, Sigma Aldrich), polytetrafluoroethylene (PTFE, 60 wt % suspension in water, Aldrich), carbon black powder (Sigma Aldrich), and glass fiber separator were used as received.

Tannins were obtained by water-ethanol extraction of Pinus Radiata bark from Chile [30]. They were dried, ground and sieved to obtain a roughly unimodal particle size distribution. In a first step, the tannins were subjected to HTC. 

Chemical composition

The chemical composition of the ACs in the bulk and on the surface of the materials was obtained by elemental analysis and XPS, respectively. Table S1 in supplementary material (SM) shows a summary of these results as a function of the burn-off (BO) used to obtain each AC. Elemental analysis of the materials revealed some notable features with increasing BO. For instance, the use of ammonia during the HTC step resulted in the incorporation of a very similar N content, 4.6 and 4.8 wt% in N4THC

Conclusion

This study shows that nitrogen doping by hydrohermal carbonization in ammonia not only changed the surface chemistry of the resulting carbon materials but also improved their textural properties after CO2 activation.

These changes enhanced the electrochemical performance of the N-doped activated carbons (ACs) when used as supercapacitor electrodes. The concentration of ammonia used had no significant impact on the N content nor the nature of the surface chemistry of the carbon materials.

Read the Full Paper:

Oscar Pinto-Burgos at col., Enhancing electrochemical capacitor performance of N-doped tannin-derived carbons by hydrothermal treatment in ammonia; https://doi.org/10.1016/j.jpowsour.2024.234332

Related

Source: Sciencedirect

Recent Posts

Samsung Electro-Mechanics Releases High-Capacitance MLCCs for AI Server Applications

21.5.2025
27

Capacitor Ripple Current Testing: A Design Consideration

21.5.2025
36

Developing Low Inductance Film Capacitor using Bode 100 Analyzer

15.5.2025
43

YAGEO Extends Rectangular Aluminum Electrolytic Capacitor Family

15.5.2025
53

Dr. Tomas Zednicek Vision for Europe 2025 Passive Electronics Market

14.5.2025
49

Exxelia Power Film Capacitors Support Critical Systems Across Various Industries

13.5.2025
25

H2-Assisted Thermal Treatment of Electrode Materials Increases Supercapacitors Energy Density

13.5.2025
10

Researchers Present Hybrid Supercapacitor Zn-Ion Microcapacitors

12.5.2025
32

Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

6.5.2025
135

Murata and NIMS Built New Database of Dielectric Material Properties

5.5.2025
66

Upcoming Events

May 28
16:00 - 17:00 CEST

Power Over Data Line

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Capacitor Ripple Current Testing: A Design Consideration

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version