Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Introduces High Current 80VDC Board-Mount EMI Filters

    Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

    TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

    Sumida Announces New DC Common Mode Choke Coil Series

    KYOCERA AVX Releases New 3dB Hybrid Couplers

    SCHURTER Unveils High Voltage Fuses for EV Applications

    YAGEO Releases First to Market 750V Aluminum Capacitors

    binder Introduces M9 Compact Circular Connector

    Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Introduces High Current 80VDC Board-Mount EMI Filters

    Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

    TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

    Sumida Announces New DC Common Mode Choke Coil Series

    KYOCERA AVX Releases New 3dB Hybrid Couplers

    SCHURTER Unveils High Voltage Fuses for EV Applications

    YAGEO Releases First to Market 750V Aluminum Capacitors

    binder Introduces M9 Compact Circular Connector

    Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

ESA Solar Orbiter Pass Extreme EMC and Magnetic Field Stress Test

25.9.2019
Reading Time: 3 mins read
A A

Source: ESA news

An important stage in the development of ESA’s Solar Orbiter mission was successfully completed, when a series of tests to validate the electromagnetic compatibility and magnetic properties was carried out on the spacecraft’s flight model. The mission require extra ordinary EMC and magnetic field strength from all mechanical and electrical components on board including passive components.

RelatedPosts

TDK Introduces High Current 80VDC Board-Mount EMI Filters

Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

After shipment from prime contractor Airbus Defence and Space in Stevenage, UK, last year, the Solar Orbiter spacecraft has been undergoing a series of tests at the premises of IABG in Ottobrunn, Germany, testing its thermal and mechanical properties, the deployment of several elements, and most recently its electromagnetic compatibility (EMC) and magnetic behaviour.

The EMC testing took place in an anechoic chamber at IABG, where the spacecraft was isolated from external electromagnetic interference. The chamber walls are covered with thousands of pointy pyramids that fully absorb reflections of electromagnetic waves, muting also any sound echoes and creating an eerie silence. Performed between 8 and 22 May, these tests were needed to verify that the spacecraft’s electrical equipment will be fully electromagnetically compatible throughout all phases of the mission.

Electromagnetic compatibility is a key aspect of any space mission, because electrical and electronic equipment can be a source of electromagnetic emissions and/or sensitive to such emissions, so the compatibility between the various onboard emission sources and their susceptibilities needs to be verified before launch from the Cape Canaveral launch site in Florida, USA

Analysis of the test data showed that the spacecraft meets the EMC requirements with respect to interactions with the TT&C subsystems onboard and with external equipment during launch. Analysis of the EMC test for the RPW instrument yielded results that were consistent with prior expectation from unit level testing and analysis, but further characterisation will be necessary during in-flight and in-orbit commissioning.

While most spacecraft undergo only EMC testing, missions that involve measuring magnetic fields in space with exquisite accuracy – such as Solar Orbiter, which will measure the magnetic field of the solar wind with its Magnetometer (MAG) and with the SCM component of the RPW instrument, or magnetospheric plasma missions like ESA’s Cluster and Swarm – require an additional set of tests to fully characterise their magnetic properties.

These tests were conducted in a unique facility, the magnetic field simulation facility (MFSA), located just outside the IABG premises in a nearby forest to avoid interference with human-generated magnetic fields. In addition to that, the facility consists completely of non-magnetic materials like wood, and contains twelve 15-m coils – nearly as large as the building – to create a homogeneous magnetic environment that compensates Earth’s own magnetic field, simulating outer space conditions.

The analysis of the magnetic tests indicates that the mission requirements were met within the limits of the testing facility. After launch, in the even quieter environment of space, further measurements during the commissioning phase will complement the results of these tests to fully characterise the magnetic properties of the spacecraft.

The spacecraft electromagnetic compatibility and magnetic cleanliness are especially important aspects for the science that Solar Orbiter will perform, not only for the RPW (EMC aspects) and MAG (magnetic properties) instruments. They are also key elements for the two particle detector instruments on board – the Solar Wind Plasma Analyser (SWA) and the Energetic Particles Detector (EPD) – in order to reconstruct the path of incoming particles that might be deflected by any residual spacecraft electric or magnetic field.

 

About Solar Orbiter

Solar Orbiter’s mission is to perform unprecedented close-up observations of the Sun. Its unique orbit will allow scientists to study the Sun and its corona in much more detail than previously possible, and to observe specific features for longer periods than can ever be reached by any spacecraft circling the Earth. In addition, Solar Orbiter will measure the solar wind close to the Sun, and provide high-resolution images of the uncharted polar regions of the Sun.

It will carry 10 state-of-the-art instruments. Remote sensing payloads will perform high-resolution imaging of the Sun’s atmosphere – the corona – as well as the solar disk. Other instruments will measure the solar wind and the solar magnetic fields in the vicinity of the orbiter. This will give us unprecedented insight into how our parent star works, and how we can better predict periods of stormy space weather, which are related to coronal mass ejections (CMEs) that the Sun throws our way from time to time.

Scheduled for launch in February 2020, Solar Orbiter will take just under two years to reach its initial operational orbit, taking advantage of gravity-assist flybys of Earth and Venus, and will subsequently enter a highly elliptical orbit around the Sun.

Solar Orbiter is an ESA-led mission with strong NASA participation.

 

featured image: Solar Orbiter in the magnetic field simulation facility. Credit: ESA–S. Corvaja

 

Related

Recent Posts

TDK Introduces High Current 80VDC Board-Mount EMI Filters

2.7.2025
18

KYOCERA AVX Releases New 3dB Hybrid Couplers

1.7.2025
13

YAGEO Releases First to Market 750V Aluminum Capacitors

30.6.2025
40

Vishay Expands Automotive High Frequency Thin Film Chip Resistors

26.6.2025
24

Role of High-Q Ceramic Filters to Overcome GNSS Jamming

19.6.2025
20

Advanced Conversion Announces Mass Production of 200C Film Capacitors

18.6.2025
42

DigiKey Offers Zephyr Operating System Workshop and Training Videos

6.6.2025
20

Exxelia to Present Smart Integrated Magnetics and MML Film Capacitors at SIAE25 

6.6.2025
42

5th PCNS Conference Registration Now Open!

5.6.2025
40

Quantic Eulex Presents Ceramic Gap RF Capacitors

12.6.2025
30

Upcoming Events

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

Jul 29
16:00 - 17:00 CEST

Impact of Elevated Voltage and Temperature on Molded Power Inductors in DC/DC converters

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version