Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

    Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

    Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

    Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

    Samtec Releases 800-Position High-Performance Array Connectors  

    DigiKey Announces Back to School Giveaway to Empower Tomorrow’s Innovators

    Ripple Steering in Coupled Inductors: SEPIC Case

    TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

    Samsung Releases Ultra–High-Capacitance 4.7uF 2.5V MLCC in 0201 for AI GPU

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

    Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

    Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

    Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

    Samtec Releases 800-Position High-Performance Array Connectors  

    DigiKey Announces Back to School Giveaway to Empower Tomorrow’s Innovators

    Ripple Steering in Coupled Inductors: SEPIC Case

    TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

    Samsung Releases Ultra–High-Capacitance 4.7uF 2.5V MLCC in 0201 for AI GPU

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

FastCAP Systems Rebrands to Nanoramic Laboratories

27.5.2018
Reading Time: 2 mins read
A A

Source: Nanoramic Laboratories news

As FastCAP expands its product lines to include advanced materials from carbon nanotubes, the company rebrands to Nanoramic Laboratories.

RelatedPosts

Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

BOSTON, MA, May 24, 2018 — FastCAP Systems Corporation, an industry leader in extreme environment energy storage technology, is rebranding to Nanoramic Laboratories.  In addition to ultracapacitors, Nanoramic will specialize in advanced material solutions based on nanocarbon technology.

In 2018, FastCAP’s product offerings expanded to include a division focused on the development of advanced materials, with products as diverse as thermal interface materials, battery and capacitor electrodes, and EMI/RFI shielding technology.  The name FastCAP Systems no longer represents the company’s full suite of product offerings.  The shift in focus led executives to make the change from FastCAP Systems to Nanoramic Laboratories.

“By re-identifying our business around our core competencies in advanced materials, we are recognizing the broader market opportunities for our nanocarbon and composite material products.  These technologies are enablers for a host of energy storage technologies, thermal management and EMI shielding solutions, as well as light-weighting and structural materials to name a few,” said John Cooley, President and Chief Operating Officer.  “This, combined with overwhelming customer draw, has created a compelling opportunity to enter new and exciting markets while continuing to support our existing energy storage products.”

Nanoramic’s breakthrough product offering is a binder-free composite energy storage electrode initially designed for high temperature and high voltage ultracapacitors, also known as supercapacitors or electric double layer capacitors (EDLCs).  This binder-free feature allows for low ESR, high capacitance, and high electrochemical stability in the same electrode. The electrode is capable of wide temperature operation, with the ability to perform in conditions between -55ºC and 200ºC.  Its high operating voltage greater than 3V and high capacity retention make it superior to incumbent technology.

Nanoramic’s line of ultracapacitors will be sold under the name FastCAP Ultracapacitors.  FastCAP Ultracapacitors are the only ultracapacitors capable of operation in conditions up to 150ºC.  In fact, Nanoramic’s success in advanced material product development can be attributed to FastCAP Ultracapacitors’ years of research and expertise in developing carbon nanotube based electrodes.  FastCAP’s newest technology is a reflowable, slim profile, low-ESR ultracapacitor, that provides power loss protection in SSD and IOT technologies.

‍

‍


About Nanoramic:

Nanoramic specializes in material solutions based on nano-carbons.   Nano-carbons have exceptional electrical, thermal and mechanical properties at the nano-scale level. We synthesize and incorporate nano-carbons in various materials and transfer these properties at the macroscale level, addressing the needs of several applications. Nanoramic’s ultracapacitor division, FastCAP Ultracapacitors, is an industry leader in harsh environment energy storage, producing the only ultracapacitors capable of operating in temperatures up to 150ºC and under conditions of high shock and vibration.

Related

Recent Posts

Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

29.8.2025
9

Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

29.8.2025
14

Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

28.8.2025
11

Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

28.8.2025
15

TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

27.8.2025
12

Samsung Releases Ultra–High-Capacitance 4.7uF 2.5V MLCC in 0201 for AI GPU

27.8.2025
26

Vishay Releases High Current 3.3 V to 36 V ESD Protection Diodes

25.8.2025
15

TDK Extends SMT Gate Drive Transformers to 1000 V

20.8.2025
21

Non-Linear MLCC Class II Capacitor Measurements Challenges

19.8.2025
50

Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

19.8.2025
19

Upcoming Events

Sep 3
15:30 - 17:30 CEST

How to Choose Your Magnetic Supplier

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version