Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Transformer Behavior – Current Transfer and Hidden Feedback

    Littelfuse Completes Acquisition of Basler Electric

    Isabellenhütte Releases Automotive Pulse Load Resistors

    Molex Introduces Modular Wire-to-Wire Automotive Connectors

    Vishay Releases Automotive Glass Protected 0402 NTC Thermistor

    Current Sense Transformer and its Calculation

    Samsungs Low ESL MLCCs to Power Next-Generation ADAS SoCs

    TDK Unveils Small Automotive Power Inductors

    YAGEO Launches Hybrid Polymer Radial Capacitor for High-Reliability Automotive and Power Applications

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Transformer Behavior – Current Transfer and Hidden Feedback

    Littelfuse Completes Acquisition of Basler Electric

    Isabellenhütte Releases Automotive Pulse Load Resistors

    Molex Introduces Modular Wire-to-Wire Automotive Connectors

    Vishay Releases Automotive Glass Protected 0402 NTC Thermistor

    Current Sense Transformer and its Calculation

    Samsungs Low ESL MLCCs to Power Next-Generation ADAS SoCs

    TDK Unveils Small Automotive Power Inductors

    YAGEO Launches Hybrid Polymer Radial Capacitor for High-Reliability Automotive and Power Applications

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Filter Poles and Zeros Explained

10.10.2023
Reading Time: 5 mins read
A A

This blog article from Knowles Precision Devices explains filter poles and zeros. In this article we go in-depth on the background information of how poles and zeros impact a transfer function to show how this information can be used to improve filter’s performance.

n previous article Filter Q Factor Explained we discussed the different ways you can look at Q factor, one of which is to consider the Pole Q factor (often used with more complex systems).

RelatedPosts

Knowles Doubles Capacitance of its Class I Ceramic C0G Capacitors

3-Phase EMI Filter Design, Simulation, Calculation and Test

Knowles Releases High Q Non-Magnetic X7R MLCCs for Medical Imaging

We also explained in that post that filters have a transfer function H(s) which tells us what an output signal will look like for a given input signal. Note that filter transfer functions are expressed in terms of the complex variable ‘s’. 

Poles and zeros are properties of the transfer function, and in general, solutions that make the function tend to zero are called, well, zeros, and the roots that make the function tend towards its maximum function are called poles.

Let’s look at how this works using a simple RC first order lowpass filter, like the one we looked at Basic Filter Circuits Explained (Figure 1).

Figure 1. A diagram of an RC first order low-pass filter.

The transfer function for this filter written in terms of the complex frequency s, is as follows:

Thus, when s (frequency) = 0, the transfer function is 1 and we say the filter has a DC gain of 1. At s = -1/RC the transfer function will tend to infinity, so we say we have a single ‘pole’ at frequency s = -1/RC. 

Now, knowing there is a ‘pole’ at s = -1/RC really does not help us understand how the filter performs versus frequency ω, not yet anyway. To determine this, we are going to look at a more general transfer function for a first order filter:

Then to understand the frequency response we replace s with jω, where j is the imaginary number “i“:

Figure 2. A plot of the pole at in the complex plane of the ‘pole zero’ plot.

When jω = -a the transfer function tends to infinity, and we say we have a pole.

Next, if we plot the pole at -a in the complex plane of the ‘pole zero’ plot and mark it with an X, you get the graph shown in Figure 2. To see how the transfer function behaves at different values for frequency we can move the frequency value up and down the imaginary (vertical) axis for different values of jω see Figure 2.

Our transfer function will perform in the following manner – as the distance from the pole at to the frequency we are interested in grows, the signal will decrease since we are dividing by the size of that green vector (a+jω). Some additional general notes about this transfer function: 

  • at jω = 0 – We are as close to the pole as we can get if we stay on the imaginary axis and our transfer function Y will be at a maximum.
  • at jω = ∞ – We are as far away from the pole as we can get, and our transfer function Y will be at a minimum.
  • at jω = a – Our amplitude will be down by a ratio of √2 compared to its maximum, so in dB this is -3dB and we can say that is our cutoff frequency.

Therefore, in this simple case, our pole at -a gave us a cutoff frequency at a.

Similarly, our RC filter above with a pole at -1/RC gives us a cutoff frequency of ω = 1/RC.

This makes sense and we probably already know this is the cutoff frequency of an RC filter, but getting there via a roundabout route through a pole zero plot can help us understand how poles impact filter behavior. 

Using Pole and Zero Information to Enhance Your Filter Designs

Through this single pole example, we can make the following general observation about poles:

  • The closer your frequency of interest puts you on the complex plane relative to a pole, the filter’s transfer function will increase
  • The further you are away from a pole and the filter’s transfer function will decrease
  • Zeros have the opposite effect – the closer your frequency puts you to a pole, the filter transfer function will decrease and vice-versa.

As an RF designer, if you have an in-depth understanding of how poles and zeros work, you can take advantage of this information in your filter designs and improve your filter’s response. For example, you can place zeros near frequencies you want to reject and poles near frequencies you want to pass. 

Related

Source: Knowles Precision Devices

Recent Posts

Transformer Behavior – Current Transfer and Hidden Feedback

12.12.2025
3

Current Sense Transformer and its Calculation

10.12.2025
33

Digital Twin of a Tantalum Capacitor Anode: From Powder to Formation

8.12.2025
44

Researchers Present Novel Graphene-Based Material for Supercapacitors

3.12.2025
26

Circular Connectors Coding

26.11.2025
28

Transient Suppression Guide

19.11.2025
88

Overvoltage and Transient Protection for DC/DC Power Modules

13.11.2025
90

Choosing the Right Capacitor: The Importance of Accurate Measurements

12.11.2025
104

RF Inductors: Selection and Design Challenges for High-Frequency Circuits

10.11.2025
112

Upcoming Events

Dec 15
December 15 @ 13:00 - December 18 @ 15:15 EST

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Dec 16
17:00 - 18:00 CET

Coaxial Connectors and How to Connect with the PCB

Dec 19
12:00 - 14:00 EST

External Visual Inspection per MIL-STD-883 TM 2009

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version