Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    YAGEO Offers High-Performance Diplexers for Dual-Band Wi-Fi 6E/7Integration

    European Components Distribution (DMASS) Faces Continued Decline in Q2 2025

    TDK Announced Wide Frequency Automotive Wirewound POC Inductors

    Bourns Released Rugged, High-Power TO-247 Thick Film Resistor

    Bourns Announced Shielded Power Inductor with High Saturation and Low Radiation

    Würth Elektronik Expands MagI³C with Variable Step-Down Modules

    KYOCERA AVX Releases 600MHz Band71 Compact SAW Duplexer

    binder Supports Miniaturization of Power Supplies with M12 Compact Connectors

    Switched Capacitor Converter Explained

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    YAGEO Offers High-Performance Diplexers for Dual-Band Wi-Fi 6E/7Integration

    European Components Distribution (DMASS) Faces Continued Decline in Q2 2025

    TDK Announced Wide Frequency Automotive Wirewound POC Inductors

    Bourns Released Rugged, High-Power TO-247 Thick Film Resistor

    Bourns Announced Shielded Power Inductor with High Saturation and Low Radiation

    Würth Elektronik Expands MagI³C with Variable Step-Down Modules

    KYOCERA AVX Releases 600MHz Band71 Compact SAW Duplexer

    binder Supports Miniaturization of Power Supplies with M12 Compact Connectors

    Switched Capacitor Converter Explained

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Fuses for Battery Energy Storage Systems

15.8.2023
Reading Time: 3 mins read
A A

 Littelfuse, Inc., a diversified, industrial technology manufacturing company empowering a sustainable, connected, and safer world, has published the technical paper, “Fuses for Battery Energy Storage Systems.” The paper addresses how to adequately size fuses for overcurrent protection to maintain the safe and uninterrupted operation of a battery energy storage system (BESS).

It is common for overcurrents to damage the electrical equipment in battery energy storage systems. They may also cause system damage and downtime which can be costly.

RelatedPosts

Littelfuse Compact Tactile Switch Offers Low-Noise Switching and Dust Protection

Littelfuse Releases Harsh Environment Robust Tactile Switches

Littelfuse Gate Driver Integrates Diode and Current Limit Resistor in Compact IC

The BESS industry is experiencing tremendous growth and this paper provides valuable information regarding sizing fuses for circuit protection to help prevent overcurrent scenarios.

“Given that Littelfuse is the leader in circuit protection, we play a critical role in helping to enable our customers’ energy storage system applications,” stated Immanuel Umenei Littelfuse Industrial Business Senior Global Manager, Renewable Energy. “This circuit protection fuse sizing guide showcases our critical application expertise and helps to close the knowledge gap to ensure BESSs are safe and operational.”

In a battery energy storage system (BESS), the energy in the battery cells is like raindrops that combine to form a brook. Made of the combined energy from cells, these brooks combine to form a river—the battery-module energy. The modules are combined in series to form a rack. The hills’ slope on which these rivers flow down represent the rack. Multiple rivers flowing down similar sloped hills combine to form a sea, like energy from racks in parallel combine to form a “sea” of energy. And whether it be the picturesque open water or your energy investment—all things precious must be protected.

Circuit protection becomes necessary when each of these levels from the cells to the racks form a combination of energy. Fuses are an efficient and effective way to protect a BESS from over-currents. Over-currents not only frequently damage systems, but are also the culprit of downtime, which is detrimental to a company’s bottom line.

The advantages fuses bring to a BESS are immense. Without a need for complex wiring or additional components, fuses are a great way to protect a system simply and cost-effectively.

Fuses can be easily replaced without the accumulation of additional downtime. BESS fuses’ low watt loss prevents energy loss, which efficiently minimizes wasted power from components. Their compact size makes designing high-energy density systems possible. BESS fuses have a dc-breaking capacity of up to 250 kA (or potentially more) at 1500 V dc, which enables the design of a long-duration BESS, but have a low minimum breaking capacity that offers protection for lower fault-current levels. All in all, fuses are a win for a BESS.

Circuit protection must be adequately sized to prevent catastrophic failure. The optimal circuit protection component to use depends on the

  • system voltage,
  • system nominal current,
  • time constant,
  • withstand rating of the interconnecting components,
  • ambient conditions, and
  • location of the component within the system.

This technical paper includes:

  • Where circuit protection is important in a BESS
  • Reverse coordination: a modified version of selective coordination
  • How to size fuses within each of the overcurrent-prone areas within a BESS
  • Case studies

This paper discusses the different fault-prone points of a BESS, and how to adequately size the fuse for optimal overcurrent protection.

Related

Source: Littelfuse

Recent Posts

Bourns Released Rugged, High-Power TO-247 Thick Film Resistor

30.7.2025
1

Bourns Announced Shielded Power Inductor with High Saturation and Low Radiation

30.7.2025
1

Würth Elektronik Expands MagI³C with Variable Step-Down Modules

30.7.2025
3

Samsung Electro-Mechanics Releases Molded MLCC Capacitors

28.7.2025
20

Panasonic Releases Enhanced Reliability Sealed Sliding Switches

28.7.2025
1

TDK Presents Various Large-Size Ferrite Cores for Industrial Applications

25.7.2025
14

Stackpole Unveils 1W High Power Density Current Sense Chip Resistor

24.7.2025
11

Bourns Releases New 150C Shielded Carbonyl Powder Core Power Inductors

28.7.2025
16

iNRCORE Releases New Range of 1KW HiRel Planar Transformers

24.7.2025
19

Vishay Releases Industrial-Grade 3/8 Square Single-Turn Cermet Trimmer

23.7.2025
6

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version