• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication
Boss and Team of engineers repairing circuit mother board. Computer repair concept

Shelf Life and Storage of Capacitors

29.4.2022

WT Microelectronics to Acquire Future Electronics

20.9.2023

Circuit Protection Components 2023 Market Analysis

20.9.2023

Ink-Jet Printed Flexible Capacitors: Manufacturing and Ageing Tests

19.9.2023

4th PCNS Awards Passive Component Papers

19.9.2023

Benefits of Ceramic Capacitors as Bootstrap Capacitors

19.9.2023

Vishay Boosts Power Inductor Manufacturing Capacity in Mexico

19.9.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    WT Microelectronics to Acquire Future Electronics

    Circuit Protection Components 2023 Market Analysis

    Ink-Jet Printed Flexible Capacitors: Manufacturing and Ageing Tests

    4th PCNS Awards Passive Component Papers

    Benefits of Ceramic Capacitors as Bootstrap Capacitors

    Vishay Boosts Power Inductor Manufacturing Capacity in Mexico

    SUMIDA to Build New Inductive Components Factory in Northern Vietnam

    Oscillators Integration, Selection Guide and Design In

    X-FAB Provides Foundry Service for Passive Device Integration

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Oscillators Integration, Selection Guide and Design In

    Input Capacitor Selection for Power Supplies – Part 3: Electrolytic Capacitors

    Input Capacitor Selection for Power Supplies Part 2 – Ceramic Capacitors

    Input Capacitor Selection for Power Supplies Video (Part 1)

    Vishay Webinar: Components Selection for Solar Panel Systems

    Capacitors Basics: Decoupling

    Totem Pole PFC Design for E-Mobility; Microchip and WE Video

    High frequency model of the physical inductor: The Cauer model

    High frequency model of the physical inductor: The basic lumped model

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    WT Microelectronics to Acquire Future Electronics

    Circuit Protection Components 2023 Market Analysis

    Ink-Jet Printed Flexible Capacitors: Manufacturing and Ageing Tests

    4th PCNS Awards Passive Component Papers

    Benefits of Ceramic Capacitors as Bootstrap Capacitors

    Vishay Boosts Power Inductor Manufacturing Capacity in Mexico

    SUMIDA to Build New Inductive Components Factory in Northern Vietnam

    Oscillators Integration, Selection Guide and Design In

    X-FAB Provides Foundry Service for Passive Device Integration

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Oscillators Integration, Selection Guide and Design In

    Input Capacitor Selection for Power Supplies – Part 3: Electrolytic Capacitors

    Input Capacitor Selection for Power Supplies Part 2 – Ceramic Capacitors

    Input Capacitor Selection for Power Supplies Video (Part 1)

    Vishay Webinar: Components Selection for Solar Panel Systems

    Capacitors Basics: Decoupling

    Totem Pole PFC Design for E-Mobility; Microchip and WE Video

    High frequency model of the physical inductor: The Cauer model

    High frequency model of the physical inductor: The basic lumped model

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Shelf Life and Storage of Capacitors

29.4.2022
Reading Time: 5 mins read
A A
Boss and Team of engineers repairing circuit mother board. Computer repair concept

Boss and Team of engineers repairing circuit mother board. Computer repair concept

1.6k
VIEWS

In many electronic devices, the capacitors are the life-limiting components. Whereas the operational life of a capacitor is dependent on both electrical factors and environmental factors, the shelf life is mostly determined by storage conditions.

The shelf life of most capacitors depends on environment factors such as humidity, temperature, and atmospheric pressure. Subjecting capacitors to harsh conditions can significantly affect their electrical properties, or even damage them completely. The effect of environmental factors on the shelf life of capacitors varies depending on the chemical composition and construction of a capacitor. Aluminum electrolytic capacitors are highly susceptible to environmental factors, especially high temperatures.

RelatedPosts

WT Microelectronics to Acquire Future Electronics

Circuit Protection Components 2023 Market Analysis

Ink-Jet Printed Flexible Capacitors: Manufacturing and Ageing Tests

Capacitors contain chemical materials and exposing some of them to high temperatures accelerates chemical reactions. For aluminum electrolytic capacitors, it is estimated that a 10C rise in temperature can double the rate of chemical reactions. The gradual evaporation of the electrolyte when these capacitors are exposed to high temperatures causes a decrease in capacitance and an increase in tangent of loss angle (tan δ / DF). Generally, exposing capacitors to harsh environment causes degradation of their electrical characteristics.

Shelf Life for Aluminum Electrolytic Capacitors
Aluminum electrolytic capacitors are mostly used in applications that demand high capacitance values. They are commonly used for filtering applications in switching power supplies. The usable life of such devices is dependent on these capacitors.

The characteristics of aluminum electrolytic capacitors are greatly affected by harsh environmental conditions. The electrical characteristics that are affected when these capacitors are stored for a long time without charge are equivalent series resistance (ESR), leakage current, and capacitance. ESR and leakage current increase while capacitance decreases. Nevertheless, the changes are small if these capacitors are stored at room temperature. Today’s aluminum electrolytic capacitors have longer shelf life, usually around 2 years, as compared to their predecessors.

For aluminum electrolytic capacitors, the changes in ESR, capacitance, and leakage current are caused by chemical reaction between the aluminum oxide film and the electrolyte. Storing these capacitors at high temperatures degrades the sealing material. When this material is weakened, the dissipation of the electrolyte can occur, thereby affecting the electrical characteristics of the capacitor.

Changes in the characteristics of aluminum electrolytic capacitors when they are stored for a long time can also be caused by penetration of the electrolyte into the oxide film. This is the main cause of changes in leakage current. The rate of deterioration of the aluminum oxide film is a function of time and temperature.

When storing aluminum electrolytic capacitors, it is important to ensure that they are not exposed to moisture. High humidity accelerates oxidation of lead wires/terminals. This degrades solderability of a capacitor. Apart from moisture, it is also necessary to ensure that these components are not exposed to ultraviolet rays, ozone, oil, and radiations. Exposing capacitors to these conditions causes the rubber end seals to deteriorate. Weakening of the end seals lowers the overall reliability of aluminum electrolytic capacitors.

It is important to know the storage time of aluminum electrolytic capacitors before using them. Since leakage current increases with an increase in storage time, a capacitor that has been stored for a long time can have a high leakage current. The high current required to restore the aluminum oxide film of such a capacitor can damage the component. This current surge can also affect an electronic circuit.

The aluminum oxide film of a capacitor can be reconditioned by applying voltage to the component. This process of rebuilding a deteriorated oxide film of a capacitor is known as capacitor reforming. It is advisable not to use capacitors that have been in the store for an extended period of time.

Shelf Life for Tantalum Capacitors
Tantalum capacitors have a long shelf life. The electrical characteristics of these capacitors are not affected significantly when they are stored for a long period of time. Unlike aluminum electrolytic capacitors, tantalum capacitors have higher stability, and their capacitance does not decrease with time.

Many studies have revealed that tantalum capacitors can be stored for a long period of time with little or no variation in electrical characteristics. However, a small change in leakage current occurs when a tantalum capacitor is stored for an extended period of time. The storage conditions determine the changes that occur in tantalum capacitors.

Storing tantalum capacitors at high temperatures can cause a significant change in leakage current. However, the normal leakage current is regained when a voltage is applied to the device for a short time. Small or no changes in leakage current are noticed when these capacitors are stored at low temperatures. When storing tantalum capacitors, it is advisable to follow the storage instructions provided by the manufacturer.

Shelf Life for Ceramic Capacitors
The shelf life of ceramic capacitors is greatly determined by method of packaging and storage conditions.  Unlike aluminum electrolytic capacitors, the dielectric material of multilayer ceramic capacitors (MLCCs) does not exhibit failures when the capacitor is stored for a short period of time. However, long-term storage of surface mount multilayer capacitors can cause aging of dielectrics (Class II dielectrics), solderability problems, and degradation of tape and reel.

When ceramic capacitors are stored for an extended period of time, a slow oxidation process can cause degradation of terminations. Storing ceramic capacitor in open air or exposing them to chlorine gas or sulfur dioxide accelerates the oxidation process. Oxidation of terminations affects solderability of multilayer ceramic capacitors.

The capacitance of ceramic capacitors constructed with Class II dielectrics such as X7R, Z5U, and Y5U reduces with time. This decay of capacitance, also known as aging, is a function of time and independent of storage conditions. To reverse aging, the dielectric is heated at a temperature above the Curie Point.

Ceramic capacitors should be stored at temperature and humidity conditions specified by the manufacturer. Before using a capacitor, you should check the recommended shelf life, date of receipt, and inspect terminations.

Conclusion
For most capacitors, the shelf life is significantly determined by storage conditions. Electrical characteristics of stored capacitors change mainly depending on storage conditions, especially temperature and humidity. For some capacitors such as aluminum electrolytic capacitors, storage temperature determines the rate of chemical reactions. Aluminum electrolytic capacitors that are stored at high temperatures lose capacitance faster than those stored at low temperatures. Exposing capacitors to moisture accelerates oxidation of lead wires/terminals. This oxidation of terminals degrades solderability. Before using a capacitor, it is important to check its receipt time. Some capacitors require reforming after they have been stored for an extended period of time without recharge. To maximize the life of capacitors, they should be stored under conditions specified by the manufacturer.

Related Posts

Capacitors

Ink-Jet Printed Flexible Capacitors: Manufacturing and Ageing Tests

19.9.2023
17
PCNS

4th PCNS Awards Passive Component Papers

19.9.2023
24
Capacitors

Benefits of Ceramic Capacitors as Bootstrap Capacitors

19.9.2023
10

Upcoming Events

Sep 19
September 19 @ 12:00 - September 21 @ 14:10 CEST

RF and Microwave Course for Engineers

Sep 26
September 26 @ 12:00 - September 28 @ 14:00 EDT

Microwave Packaging Technology

Sep 26
16:00 - 17:00 CEST

Connector Temperature Rise and Derating

View Calendar

Popular Posts

  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Coefficient of Linear Thermal Expansion on Polymers Explained

    0 shares
    Share 0 Tweet 0
  • Film Capacitors Characteristics and Uses in Power Applications

    0 shares
    Share 0 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Archive

2023
2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.