Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Releases High Power High Ripple Chokes

    KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    Würth Elektronik Offers Accessory Humidity Sensor Filter Cap

    Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

    Vishay Releases High Saturation 180C Automotive Inductors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Releases High Power High Ripple Chokes

    KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    Würth Elektronik Offers Accessory Humidity Sensor Filter Cap

    Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

    Vishay Releases High Saturation 180C Automotive Inductors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

High Energy Density Supercapacitors for Space Applications

28.4.2025
Reading Time: 4 mins read
A A

This paper High Energy Density Supercapacitors for Space Applications: A Leap Forward in Space Exploration Energy Systems was presented by Victoria Manzi-Orezzoli, Swistor SA, Switzerland during the 5th Space Passive Component Days (SPCD), an International Symposium held from October 15th to 18th, 2024, at ESA/ESTEC in Noordwijk, the Netherlands. Published under permission from ESA SPCD organizers.

Introduction

RelatedPosts

High-Density PCB Assemblies For Space Applications

Solid State Polymer Multilayer Capacitors For High Temperature Application

Graphene-Based BOSC Bank Of Supercapacitor Cells

The exploration of space demands robust, efficient, and sustainable energy storage systems. Traditional batteries, although effective in storing large amounts of energy, face limitations such as lower power densities, reduced efficiency in extreme conditions, and shorter life cycles.

This paper introduces a groundbreaking advancement: Lithium-free, high-energy-density hybrid supercapacitors designed to meet the rigorous demands of space applications.

Authored by Victoria Manzi-Orezzoli and Clara Moldovan from Swistor SA, the study presents the design, experimental results, and potential applications of these innovative supercapacitors.

Key Points

  • Novel Technology: Introduction of Lithium-free hybrid supercapacitors with superior energy density (60 Wh/kg) and cell voltage (3.3 V).
  • Environmental Benefits: Use of eco-friendly electrolytes and abundant, non-critical raw materials.
  • Operational Resilience: High thermal tolerance (up to 85°C) and durability exceeding 100,000 cycles.
  • Performance Metrics: Enhanced power density, reduced equivalent series resistance (ESR), and minimal performance degradation.
  • Space Applications: Potential to optimize payloads, reduce system complexity, and improve energy efficiency in spacecraft.

Extended Summary

The paper begins by highlighting the escalating energy demands of modern space missions. Traditional lithium-ion batteries, while reliable, struggle with issues like low power density and degradation under extreme conditions. Supercapacitors, particularly Electrochemical Double Layer Capacitors (EDLCs), emerge as promising alternatives due to their rapid charge/discharge capabilities and extended cycle life.

Swistor SA introduces a Lithium-free hybrid supercapacitor that surpasses conventional models in both energy density and operational voltage. By leveraging nanostructured carbon materials combined with redox-active species, the new design achieves an impressive energy density of 60 Wh/kg and operates efficiently at voltages up to 3.3 V. The absence of lithium not only enhances safety by reducing thermal runaway risks but also aligns with sustainability goals.

The experimental section details the development process, including material selection, electrode fabrication, and electrochemical characterization. The researchers fabricated both coin and pouch cell formats, optimized for different space applications. The supercapacitors demonstrated extraordinary durability, maintaining over 80% capacitance even after 100,000 charge-discharge cycles. This longevity is critical for space missions where maintenance and replacements are impractical.

Performance tests revealed that these supercapacitors exhibit minimal resistance increases and maintain high efficiency across various current densities. Compared to commercial EDLCs, Swistor’s supercapacitors not only deliver higher energy densities but also operate at higher voltages, reducing the need for complex series connections in spacecraft power systems.

The paper concludes with a comparison of Swistor’s technology against existing commercial supercapacitors. The results underscore the superiority of Swistor’s design in terms of energy density, power output, and environmental impact. These advancements are achieved without compromising safety, as the supercapacitors are free from critical raw materials and hazardous substances.

Conclusion

Swistor SA’s development of high-energy-density, Lithium-free hybrid supercapacitors marks a significant leap forward in space energy storage technology.

The combination of high power, extended cycle life, and environmental sustainability positions these supercapacitors as ideal candidates for future space missions.

Looking ahead, Swistor aims to scale production, enhance energy and power densities, and meet rigorous space industry standards, paving the way for more efficient and reliable space exploration power systems.

Read the full paper:

ORAL_Day 2_22_SWISTOR_Supercaps for Space applications_vfDownload

Related

Source: ESA SPCD

Recent Posts

Radiation Tolerance of Tantalum and Ceramic Capacitors

8.8.2025
35

TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

7.8.2025
15

Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

6.8.2025
19

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

6.8.2025
25

How to Calculate the Output Capacitor for a Switching Power Supply

6.8.2025
23

Evaluation and Modeling of Supercapacitors for Reliability of Lifetime Predictions

4.8.2025
22

Researchers Presents High-Performance Carbon-Based Supercapacitors

1.8.2025
25

Modelithics Announces v25.5 of the COMPLETE+3D Library for Ansys HFSS

1.8.2025
5

PCNS 2025 Final Program Announced!

4.8.2025
64

European Components Distribution (DMASS) Faces Continued Decline in Q2 2025

30.7.2025
58

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version