Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Transformer Safety IEC 61558 Standard

    ESR of Capacitors, Measurements and Applications

    Murata Christophe Pottier Appointed President of EPCIA

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    YAGEO Unveils Compact 2.4 GHz SMD Antenna

    KYOCERA AVX Releases Antenna for Iridium Satellite IoT Applications

    Molex Releases Industry-First Quad-Row Board-to-Board Connectors with EMI Shields

    Image credit: Samtec

    How to Match the Right Connector with Protocol Requirements

    Smoltek CNF-MIM Capacitors Pass 1,000h Reliability Test

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Transformer Safety IEC 61558 Standard

    ESR of Capacitors, Measurements and Applications

    Murata Christophe Pottier Appointed President of EPCIA

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    YAGEO Unveils Compact 2.4 GHz SMD Antenna

    KYOCERA AVX Releases Antenna for Iridium Satellite IoT Applications

    Molex Releases Industry-First Quad-Row Board-to-Board Connectors with EMI Shields

    Image credit: Samtec

    How to Match the Right Connector with Protocol Requirements

    Smoltek CNF-MIM Capacitors Pass 1,000h Reliability Test

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

High-performance supercapacitor, using ultrasonic spray device

2.1.2018
Reading Time: 3 mins read
A A

source: Energy Harvesting Journal news

A team of researchers, affiliated with UNIST has introduced a novel manufacturing technology to form new materials, using ultrasonic waves used in medical diagnosis, humidifiers, as well as sonar systems for submarines.

RelatedPosts

Transformer Safety IEC 61558 Standard

ESR of Capacitors, Measurements and Applications

Murata Christophe Pottier Appointed President of EPCIA

The method has received considerable attention as a new technique that is capable of manufacturing high-performance materials without the need of high temperatures or pressure. This breakthrough has been led by Professor Tae-Hyuk Kwon in the School of Natural Science in collaboration with Professor Jong-Beom Baek and Professor Noejung Park at UNIST, South Korea. The findings of this study have been published online in the prestigious journal, Advanced Materials on December 14, 2017.

In the study, the research team presented a new approach to form carbon-heteroatom bonds in carbon nanomaterials, inducing chemical reaction with inert N2 or O2 gases by ultrasonic spray deposition (USD). This new technique fixes nitrogen or oxygen into the carbon nanomaterials, using ultrasonic energy and ultrasonic atomization. It can be applied for many applications in materials science, including secondary battery materials, as it is capable of forming bonds between carbon and other atoms in a simple and fast manner. Their ultrasonic spray works according to the similar principle of a humidifier. Just as the humidifier breaks up the water into tiny droplets and spout a cool mist into the air, the carbon nanomaterial inks are ultrasonically atomized by the spray instrument to form fine droplets, which are nebulized by a compressed carrier gas (N2 or O2). Through this process, N2 or O2 is fixed into the carbon nanomaterials.

“The water sprayed from the humidifier forms an extremely fine mist, consisting of droplets between 1-2 µm in diameter, which increases the surface area for evaporation and thus helps to keep moisture in the air,” says Hyun-Tak Kim in the Combined M.S/Ph.D of Natural Science, the first author of the study.

“Ultrasonic spray device refers to a method that fixes nitrogen or oxygen into the carbon nanomaterial inks, using ultrasonic energy and ultrasonic atomization.”

This study especially has attracted much attention for introducing an innovative approach that induces chemical reactions with inert N2 or O2 gases that virtually do not react chemically. The results show that all the carbon nanomaterials exhibit very high specific capacitances, high cycling stability, and structural flexibility after the ultrasonic doping process. In the study, the research team has also presented high-performance carbon-nanomaterial-based supercapacitor electrodes, using ultrasonic spray chemical reactions. Supercapacitors are capable of achieving a high energy density comparable to what Li-ion batteries can offer, but they have a much higher power density. It can be charged and discharged a virtually unlimited number of times without losing energy storage capability, which makes them ideal for aerospace/military applications that that require many rapid charge/discharge cycles.

The research team used a double nozzle system of ultrasonic spray to fabricate the supercapacitor electrodes: N-doped reduced graphene oxides are introduced from one nozzle and N-doped carbon nanotubes from the other nozzle to realize 3D porous electrodes. This demonstrates that ultrasonic spray technology can be used to synthesize materials and produce a highly uniform film electrodes at the same time.

“This study suggests a new synthesis method for chemical reactions by combining carbon with other atoms,” says Professor Kwon. “The simplicity and controllability of structural parameters in this approach can open many opportunities in the design and fabrication of electrochemical energy storage devices, as well as other energy conversion applications.”

This study has been also featured on the back cover of the December issue of Advanced Materials in recognition of its significance and innovation.

Source and top image: UNIST

 

Related

Recent Posts

ESR of Capacitors, Measurements and Applications

7.11.2025
5

3-Phase EMI Filter Design, Simulation, Calculation and Test

6.11.2025
22

Smoltek CNF-MIM Capacitors Pass 1,000h Reliability Test

6.11.2025
9

Capacitor Lead Times: October 2025

6.11.2025
46

Paumanok Unveils Aluminum Capacitor Foils World Markets Study 2025-2030

6.11.2025
12

Microhardness — the Hidden Key to Understanding MnOx Cathode Quality in Tantalum Capacitors

3.11.2025
23

Samsung to Invest in its Philippine MLCC Facility to Meet Automotive Demand

3.11.2025
31

Lightweight Model for MLCC Appearance Defect Detection

3.11.2025
25

DMASS Reports First Positive Signs of European Distribution Market in Q3/25

3.11.2025
13

TAIYO YUDEN Releases 22uF MLCC in 0402 Size for AI Servers

3.11.2025
16

Upcoming Events

Nov 11
17:00 - 18:00 CET

Industrial Applications Demand More from Interconnects in Next-Gen Designs

Nov 12
11:00 - 12:00 CET

PCB Design: Impedance is for everyone!

Nov 12
November 12 @ 12:00 - November 13 @ 14:15 EST

Microelectronic Packaging Failure Modes and Analysis

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version