Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Littelfuse Adds 600W Automotive TVS Diodes for High-Energy Transient Protection

    Vishay Releases Harsh Environment Robust DC-Link Film Capacitor

    Bourns Releases Automotive High Creepage and Clearance Transformer

    Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

    Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

    Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

    Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

    Samtec Releases 800-Position High-Performance Array Connectors  

    DigiKey Announces Back to School Giveaway to Empower Tomorrow’s Innovators

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Littelfuse Adds 600W Automotive TVS Diodes for High-Energy Transient Protection

    Vishay Releases Harsh Environment Robust DC-Link Film Capacitor

    Bourns Releases Automotive High Creepage and Clearance Transformer

    Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

    Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

    Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

    Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

    Samtec Releases 800-Position High-Performance Array Connectors  

    DigiKey Announces Back to School Giveaway to Empower Tomorrow’s Innovators

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

How to Calculate the Output Capacitor for a Switching Power Supply

6.8.2025
Reading Time: 5 mins read
A A

Robert Feranec in this video discusses with Ali Shirsavar, Biricha how to calculate and choose output capacitor for switching power supplies.

Calculating and Selecting Output Capacitors for Switching Power Supplies

RelatedPosts

Switched Capacitor Converter Explained

LLC Resonant Converter Design and Calculation

Fly-Buck Converter Explained and Comparison to Flyback

This video provides an in-depth exploration of methods for calculating and selecting output capacitors for switching power supplies. Drawing from insights shared by Robert Feranec and Ali Shirsavar of Biricha, the video identifies key considerations in capacitor selection, including voltage dip requirements, ripple reduction, and the distinct characteristics of ceramic capacitors and electrolytic capacitors.

Content Summary

1. Introduction

Switching power supplies are widely utilized in modern electronic devices due to their efficiency and performance. Among the critical components within these systems is the output capacitor, which plays a pivotal role in maintaining output voltage stability and minimizing ripple.

2. Importance of Output Capacitors

The primary functions of output capacitors in power supplies are:

  • Reducing Output Voltage Dip: Mitigates voltage drops when sudden load changes occur before the control loop compensates.
  • Minimizing Ripple: Smoothens the ripple current from inductors, crucial in topologies like buck converters.

3. Calculating Capacitor Values

3.1 Capacitance Value Based on Voltage Dip Requirement

The allowable voltage dip (undershoot) and the time until the control loop responds are specified in design requirements. The key equation for minimum output capacitance is:

Where:  

  • Cout = capacitance of the output capacitor  
  • ΔVout = allowable voltage dip
  • ΔIstep = current load step
  • Tdip = time period during the Vout will dip

Example calculation:

  • A 5V, 2A supply with a 200 kHz switching frequency.
  • Allowing 5% dip (250mV) and a 50% load step (1A).
  • Time for control loop response = 5 switching cycles (~25 µs).

This results in a minimum required capacitance of 100 µF, adjusted to 150 µF considering a 30-50% safety margin.

3.2 Ripple Requirements

  • Ceramic Capacitors: Low ESR allows ripple calculations based predominantly on capacitance.
  • Electrolytic Capacitors: High ESR means ripple is mainly influenced by ESR rather than capacitance.

For ceramics, capacitance calculations consider ripple current and switching frequency. For electrolytics, Ohm’s Law (V = IR) helps determine maximum allowable ESR.

4. Practical Demonstrations

Real-world measurements illustrate the behavior of different capacitors under load conditions. Observations include:

  • Ceramic Capacitors: Exhibit low ripple (~6 mV) with pseudo-sinusoidal waveforms.
  • Electrolytic Capacitors: Show higher ripple (~130 mV) with triangular waveforms due to dominant ESR effects.

5. Selecting the Right Capacitor

When choosing capacitors:

  • Ensure capacitance meets the worst-case scenario between voltage dip and ripple requirements.
  • Consider voltage rating with a 20-30% margin for electrolytics and 100% for ceramics.
  • Verify ripple current ratings, adjusting for RMS values with suitable safety margins.

6. Tools and Software

Software tools like Biricha WDS streamline these calculations, incorporating control loop design and capacitor selection based on real-time parameters.

7. Conclusion

Understanding the principles behind capacitor selection aids in designing robust switching power supplies. Whether calculating manually or using specialized software, consideration of voltage dip, ripple, and component characteristics ensures optimal performance.

Related topic links

  • Buck Converter Design and Calculation
  • SEPIC Converter Design and Calculation
  • Boost Converter Design and Calculation
  • Flyback Converter Design and Calculation
  • Fly-Buck Converter Explained and Comparison to Flyback
  • LLC Resonant Converter Design and Calculation
  • Switching vs Linear Power Converters Compared
  • DC-DC Converter Basic Characteristics and Formulas
  • Input filters for DC/DC converters
  • Selection of Storage Inductors for DC/DC Converters
  • Selection of Capacitors for DC/DC Converters

Related

Source: Robert Feranec, Biricha

Recent Posts

Vishay Releases Harsh Environment Robust DC-Link Film Capacitor

2.9.2025
4

Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

29.8.2025
22

Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

28.8.2025
13

Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

28.8.2025
23

Ripple Steering in Coupled Inductors: SEPIC Case

27.8.2025
14

Samsung Releases Ultra–High-Capacitance 4.7uF 2.5V MLCC in 0201 for AI GPU

27.8.2025
31

SEPIC Converter with Coupled and Uncoupled Inductors

26.8.2025
28

Coupled Inductors in SEPIC versus Flyback Converters

26.8.2025
19

Non-Linear MLCC Class II Capacitor Measurements Challenges

19.8.2025
56

Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

19.8.2025
19

Upcoming Events

Sep 3
15:30 - 17:30 CEST

How to Choose Your Magnetic Supplier

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version