Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    DigiKey Presents Factory Tomorrow Season 5 Video Series

    Samsung MLCCs Lineup for In-Vehicle Infotainment

    source: Samtec

    Best Practices for Cable Management in High-Speed and High-Density Systems

    Würth Elektronik Unveils Compact Common-Mode Data Lines Chokes

    Bourns Releases TCO 240 Watt USB Mini-Breaker

    Littelfuse Adds 600W Automotive TVS Diodes for High-Energy Transient Protection

    Vishay Releases Harsh Environment Robust DC-Link Film Capacitor

    Bourns Releases Automotive High Creepage and Clearance Transformer

    Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    DigiKey Presents Factory Tomorrow Season 5 Video Series

    Samsung MLCCs Lineup for In-Vehicle Infotainment

    source: Samtec

    Best Practices for Cable Management in High-Speed and High-Density Systems

    Würth Elektronik Unveils Compact Common-Mode Data Lines Chokes

    Bourns Releases TCO 240 Watt USB Mini-Breaker

    Littelfuse Adds 600W Automotive TVS Diodes for High-Energy Transient Protection

    Vishay Releases Harsh Environment Robust DC-Link Film Capacitor

    Bourns Releases Automotive High Creepage and Clearance Transformer

    Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

How to Process Through-Hole Components by Reflow Assembly

1.7.2025
Reading Time: 4 mins read
A A

This podcast by Würth Elektronik explains conditions and processes how to mount through-hole components by reflow.

Because of fast assembling and small sizes, designers are turning to surfance mount technology on their PCBs.

RelatedPosts

Würth Elektronik Unveils Compact Common-Mode Data Lines Chokes

SEPIC Converter with Coupled and Uncoupled Inductors

Würth Elektronik Releases Push-Button and Main Switches

Although there are still through-hole (THT) components that need to be soldered by Wave, Through-Hole Reflow (THR), allows designers to solder the Through-Hole Components together with the surfance mount parts in the Reflow Oven, thus canceling the whole Wave Soldering Process; saving time and money.

Enhancing PCB Design with Through-Hole Reflow (THR) Technology

This presentation explores the integration of Through-Hole Reflow (THR) technology in Printed Circuit Board (PCB) design and manufacturing. It highlights the evolution of PCB assembly from traditional through-hole components to modern Surface Mount Technology (SMT), while emphasizing the benefits, process optimizations, and quality considerations associated with THR.

1. Introduction

The evolution of PCB technology has transitioned from large, bulky through-hole components to compact SMT. However, certain components such as connectors necessitate robust mechanical stability, achievable through THR. This paper delves into the rationale, requirements, and processes involved in THR.

2. The Necessity of Through-Hole Components

Despite the prevalence of SMT, through-hole components are essential for:

  • High mechanical stress applications
  • Connectors requiring strong insertion and withdrawal forces
  • High current carrying capabilities

3. Material and Design Requirements

3.1 Housing Material

  • Temperature Resistance: Use of Liquid Crystal Polymer (LCP) for high thermal stability up to 260°C.
  • Moisture Sensitivity: LCP offers low moisture absorption (MSL1), reducing defects such as voids during reflow.

3.2 Structural Modifications

  • Standoffs: Facilitate airflow, solder paste deposition, and visual inspection post-soldering.
  • Pin Adjustments: Optimal pin protrusion (0.5 mm) ensures mechanical stability and effective solder joint formation.

4. PCB Layout and Stencil Design

4.1 Via and Pad Design

  • Calculation of via volume to ensure adequate solder paste fill.
  • Adjustment of pad sizes for optimal thermal and electrical performance.

4.2 Stencil Aperture Design

  • Recommendations for stencil thickness (150 µm).
  • Aperture shapes (round, rectangular, overprint designs) tailored to component geometry and paste volume requirements.

5. THR Process Stages

5.1 Solder Paste Application

  • Manual or automated stencil printing ensuring consistent paste deposition.

5.2 Component Placement

  • Use of pick-and-place machines complemented by manual placement for larger components.

5.3 Reflow Soldering

  • Reflow profiles aligned with component thermal mass and paste characteristics.

6. Quality Assurance: IPC-A-610 Standards

  • Class I: General electronics with minimal reliability requirements.
  • Class II: Industrial products with continuous performance expectations.
  • Class III: High-reliability applications (e.g., aerospace, medical devices).

6.1 Solder Joint Criteria

  • Minimum 75% via fill for Class II and III.
  • Visual inspection facilitated by standoffs and AOI systems.

7. Advantages of THR Technology

  • Mechanical Robustness: Enhanced stability for connectors and heavy components.
  • Process Efficiency: Single reflow process eliminates the need for wave soldering.
  • Cost-effectiveness: Reduced production steps lead to lower operational costs.

8. Summary

THR technology bridges the gap between traditional through-hole robustness and SMT efficiency. By adapting component materials, PCB layout, and reflow processes, manufacturers can achieve superior mechanical and electrical performance while optimizing production costs.

Related

Source: Würth Elektronik

Recent Posts

Glass Core Technology Breakthrough Potential for High-Speed Interconnects

12.6.2025
48

What Track Width To Use When Routing PCB

6.6.2025
60

Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

15.5.2025
48

High-Density PCB Assemblies For Space Applications

2.5.2025
52

IPC Class 2 vs Class 3 Solder Joints Requirements Explained

27.2.2025
481

HIROSE Expands Open Pluggable OPS PCB connector

9.1.2025
51

How to Determine Chip Temperature

3.1.2025
219

Die and Wire PCB Bonding Explained

1.7.2025
155

EMI Shielding Challenges

1.7.2025
15

EMC with Electromechanical Inter-Connections

1.7.2025
15

Upcoming Events

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version