Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    KYOCERA AVX Releases Compact High-Directivity Couplers

    Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    Wk 18 Electronics Supply Chain Digest

    YAGEO Releases High Current SMD Common Mode Choke With Shape Core Construction

    Murata and NIMS Built New Database of Dielectric Material Properties

    Tariffs Crush Sales Sentiment in April 2025 ECST Results

    High-Density PCB Assemblies For Space Applications

    Solid State Polymer Multilayer Capacitors For High Temperature Application

    Graphene-Based BOSC Bank Of Supercapacitor Cells

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Improving Common Mode Noise Reduction while Decreasing BOM

    Die and Wire PCB Bonding Explained

    Rogowski Coil Current Sensor Explained

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    KYOCERA AVX Releases Compact High-Directivity Couplers

    Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    Wk 18 Electronics Supply Chain Digest

    YAGEO Releases High Current SMD Common Mode Choke With Shape Core Construction

    Murata and NIMS Built New Database of Dielectric Material Properties

    Tariffs Crush Sales Sentiment in April 2025 ECST Results

    High-Density PCB Assemblies For Space Applications

    Solid State Polymer Multilayer Capacitors For High Temperature Application

    Graphene-Based BOSC Bank Of Supercapacitor Cells

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Improving Common Mode Noise Reduction while Decreasing BOM

    Die and Wire PCB Bonding Explained

    Rogowski Coil Current Sensor Explained

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

How to Use Varistors as ESD/Surge Protection Devices

28.2.2024
Reading Time: 9 mins read
A A

TDK block article explains advantages of different varistor types as ESD / Surge protection devices in examples of typical circuit applications.

For industrial devices and energy apparatuses, disk varistors of which maximum allowable circuit voltage (rated voltage) and maximum peak current are large are used.

RelatedPosts

TDK Releases 750A High-Power 1500V Contactor

TDK Releases 3225 X7R Automotive MLCCs with the Industry Highest Capacitance at 100V 

TDK Releases Immersion Temperature Sensors for EV Powertrain Cooling

  • Leaded disk varistors
  • ThermoFuse varistors
  • SMD disk varistors
  • Strap varistors
  • Block varistors

Varistors can be used as suppressors to protect devices and circuits from transient abnormal voltages including an ESD (electrostatic discharge) and a lightning surge.
For protection from a relatively large surge current (100A to 25kA), leaded disk varistors and SMD disk varistors are suitable. For protection from a larger surge current (approximately 25kA or more), block varistors, and strap varistors are suitable.

Below are presented examples of varistor applications as:

  • Surge protection for the input part of a switching power supply
  • Surge protection for a LED lighting system
  • Surge protection for inductive loads such as motors
  • Surge protection for a motor with an electromagnetic brake and protection for the contact of its switch
  • Surge protection for an SSR (solid-state relay) and protection for its output terminal
  • Surge protection against load dump and field decay
  • Surge protection for joint boxes and power conditioners of solar power generation systems
  • Surge protection for important devices using a lightning transformer
  • Protection against a high-energy surge in industrial devices

Surge protection for the input part of a switching power supply (Fig.1.)

Various types of small, lightweight, and high-efficiency switching power supplies are frequently used as power supplies of electronic devices. In a switching power supply, an EMC filter is placed before the power circuit to prevent conduction noise which enters through the power line. However, as a lightning surge and a switching surge cannot be prevented only with the EMC filter, a surge protection circuit using disk varistors is placed before the EMC filter. Combinations with surge arresters and other devices and their circuit configurations vary. Similar protection circuits are embedded in AC adapters that are used for laptop computers and the likes. Varistors are also used for power strips and wall outlets with a lightning protector.

Surge protection for a LED lighting system (Fig.2.)

An LED lighting system consists of LED arrays with multiple LEDs connected, a driver (driving circuit), a control circuit, and a LED power supply as well as sub systems including a power supply for communication. Many chip varistors are used for ESD and surge protection for the interface part and varistors are necessary for an ESD protection array. An LED is a device using a semiconductor, and without protection, it can be destroyed by ESD or surge. For the reason, a varistor is installed in parallel to an LED device.

Fig.1 Example of a varistor surge protection circuit for a switching power supply
Fig.2 Varistor protection for an LED device in an LED lighting system

Surge protection for inductive loads such as motors (Fig.3.)

At the moment of turning off the power of devices with inductive loads using coils such as motors, solenoids, and electromagnetic valves, the devices discharge magnetic energy that has been stored as counter electromotive force and generate a large surge voltage. To protect the devices from the surge voltage, a varistor is connected in parallel to a load.

Surge protection for a motor with an electromagnetic brake and protection for the contact of its switch (Fig.4.)

AC motors which are used for industrial devices include a motor with a brake. The electromagnetic brake using an electromagnet, an armature (movable steel plate), and a spring can stop the rotation of the motor immediately after turning off the switch. However, as the electromagnet is an inductive load using a coil, at the moment of shutting off the current, the coil generates counter electromotive force and a large surge voltage occurs, which damage the contact of the switch. To absorb the surge voltage and protect the contact of the switch, a varistor is connected.

Fig.3 Varistor surge protection for inductive loads such as motors
Fig.4 Varistor protection for the contact of the switch of a motor with an electromagnetic brake

Surge protection for an SSR (solid-state relay) and protection for its output terminal (Fig.5.)

An SSR (solid-state relay) using a semiconductor element (such as a thyristor) is used for many industrial devices with a large current. It is a relay electrically insulated by a photocoupler, and as an advantage, it can control the on and off of a device safely by the on and off signals of very small electric current of a DC power supply. However, because a large current turns on and off, the output terminal is easily damaged by switching surge. To suppress this, a varistor is connected in parallel on the output side (Some SSRs have built-in varistors).

Fig. 5 Varistor protection for the output terminal of an SSR (solid-state relay)
Fig. 6 Load dump and surge protection by varistor

Surge protection against load dump and field decay (Fig.6.)

When a current flowing an inductive load using a coil, such as a motor and an alternator (electric generator), is shut off, a large surge voltage is generated due to generation of counter electromotive force.

Load dump is a surge problem that occurs when a battery line is shut off for a reason such as disconnection of a battery terminal while power is supplied from an alternator to a battery. Field decay is a problem with a negative surge voltage, which is generated when the polarity of a battery is reversed by mistake. As both of them may reach an ECU and cause a malfunction, ECUs must pass a load dump test and a field decay test. A disk varistor is used for surge protection.

Immunity test and emission test for ECUs (ISO10605)

EMC evaluation tests for ECUs include an immunity test for confirming that an ECU does not malfunction and an emission test for confirming that an ECU is designed not to generate a noise larger than a limit.

Immunity testStandardDescription
ESD testISO10605Evaluates its tolerance by applying an ESD
RF immunity testISO11452-2, -3, -4Evaluates its tolerance by applying a strong radio wave
Load dump testISO7637-2Evaluates its tolerance by applying a positive surge voltage
Field decay testEvaluates its tolerance by applying a negative surge voltage
Emission testStandardDescription
Radiated emission testCISPR25Evaluates radiation noise from an ECU
Conducted emission testEvaluates conduction noise from an ECU

Surge protection for joint boxes and power conditioners of solar power generation systems (Fig.7.)

DC electricity generated by a solar panel is sent to the power conditioner via a joint box, boosted in a DC- DC converter, converted into AC electricity by an inverter, and then sent to a commercial power system. To protect its circuit from an inductive lightning surge and the likes, voltage protection circuits using varistors are inserted into the input and output parts of the joint box and the power conditioner. Combining with a surge arrester increases its reliability.

Surge protection for important devices using a lightning transformer (Fig.8.)

A device called a lightning transformer is used to protect important devices such as servers in data centers and telephone switchboards from a lightning surge. It is a combination of an SPD (surge protection device or lightning protector) and a special transformer of which primary winding and secondary winding are electrostatic shielded, and a surge which cannot be removed by the SPD is bypassed through grounded electrostatic shield materials and discharged to the ground. It is excellently effective to a common-mode inductive lightning surge.

Fig.7 Varistor surge protection for joint boxes and power conditioners of solar power generation systems
Fig.8 Example of varistor based lightning surge protection with a lightning transformer

Protection against a high-energy surge in industrial devices (Fig.9.)

Block varistors and strap varistors are high-energy type products used for power supplies of industrial devices and communication devices, power switchboards at power plants and power substations, railway signal systems, and others, and their advantage is an extremely high surge current capability. A block varistor is contained in a case and has screw terminals, and a strap varistor has strap (flat plate) terminals with holes that are fixed with screws (or soldered). A surge arrester for AC power line protection is also used.

Fig. 9 Example of varistor protection against a high-energy surge in an industrial device

Related

Source: TDK

Recent Posts

Shielding Cabinets

29.4.2025
16

Magnetic Shielding and Magnetic Shielding Sheets

29.4.2025
25

Corrosion its Development and Prevention

26.4.2025
24

Housing EMC Requirements, Issues and Solutions

26.4.2025
39

RF Inductors Key Characteristics and Applications

17.4.2025
55

Electromagnetic Emissions Leakage in Enclosures

14.4.2025
38

Coupled Inductors in Multiphase Boost Converters

11.4.2025
77

Influence of Shielding Materials on Shielding Effectiveness

10.4.2025
56

TDK Releases Immersion Temperature Sensors for EV Powertrain Cooling

27.3.2025
30

Supercapacitor Separator with High Ionic Conductivity Enables Line-Filter Applications at High Power

21.3.2025
45

Upcoming Events

May 14
11:00 - 12:00 CEST

Reliable RIGID.flex PCBs for Critical Applications – Made in Europe

May 28
16:00 - 17:00 CEST

Power Over Data Line

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Tariffs Crush Sales Sentiment in April 2025 ECST Results

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version