Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    SCHURTER Unveils High Voltage Fuses for EV Applications

    YAGEO Releases First to Market 750V Aluminum Capacitors

    binder Introduces M9 Compact Circular Connector

    Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

    Wk 26 Electronics Supply Chain Digest

    Learn How Supercapacitors Enhance Power System in Knowles eBook

    TDK Releases Industry First 1uF 100V X7R MLCCs in 1608 Case

    YAGEO Expands One Turn Inductors for AI and High-Efficiency Power Applications

    YAGEO Extends Lifetime of its Aluminum SMD Chip Capacitors to 5500hrs at 125C/Ur

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    SCHURTER Unveils High Voltage Fuses for EV Applications

    YAGEO Releases First to Market 750V Aluminum Capacitors

    binder Introduces M9 Compact Circular Connector

    Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

    Wk 26 Electronics Supply Chain Digest

    Learn How Supercapacitors Enhance Power System in Knowles eBook

    TDK Releases Industry First 1uF 100V X7R MLCCs in 1608 Case

    YAGEO Expands One Turn Inductors for AI and High-Efficiency Power Applications

    YAGEO Extends Lifetime of its Aluminum SMD Chip Capacitors to 5500hrs at 125C/Ur

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Hydrogen Ions Injection Method Creates Major Increase in Electrical Resistance of Thin Film Material

10.12.2020
Reading Time: 2 mins read
A A
Fig.1 Strongly Correlated Oxide Proton Resistor devices. Credit: Osaka University

Fig.1 Strongly Correlated Oxide Proton Resistor devices. Credit: Osaka University

Researchers at Osaka University demonstrated a new technique for modifying the hydrogen concentration of resistors by applying an electrical voltage. The generated electric field drove the diffusion of hydrogen ions deeper into the perovskite rare-earth nickelate lattice, which led to a tunable “colossal” increase in electrical resistance. This research can lead to new gas sensors and electrically switchable smart materials.

Computer chips depend on the careful control of electrical signals through semiconductors. Conventionally, the conductivity of silicon chips is modified by intentionally “doping” them with impurity ions. However, this process is usually done once at the factory, and cannot be changed later. Thus, the ability to dynamically control the doping of materials would open the way for novel switches and potentially even entirely new kinds of computer circuits.

RelatedPosts

SCHURTER Unveils High Voltage Fuses for EV Applications

YAGEO Releases First to Market 750V Aluminum Capacitors

binder Introduces M9 Compact Circular Connector

Now, scientists at Osaka University have created thin films of neodymium nickel oxide (NdNiO3) with an electrical resistance that can change dramatically by controlling the distribution of hydrogen ions (protons) in the film. The hydrogen was added in a process called “gas-phase annealing” in which the thin film, which has a perovskite crystal structure, was exposed to hydrogen gas in the presence of an electric field which caused the formation of hydrogen protons. This reaction was sped up by platinum electrodes, which act as catalysts.

Increasing the annealing temperature caused more protons to diffuse into the film. At room temperature, the resistance of the films doubled from the original value, but jumped by a factor of 30 at 200°C. “We call such a large increase in resistance ‘colossal’ because it is easily detected in electronic devices,” first author Umar Sidik explains.

A colossal step for electronics
Fig.2 Schematic illustrations of Proton Resistor devices and their electric bias-dependent resistance modulation ratio. Credit: Osaka University

In this way, the combination of electric field and gas-phase annealing at a desired temperature was shown to enable control of the diffusional doping, which led to electrically tunable colossal resistive devices. The crystal structures were confirmed using X-ray diffraction and optical microscopy. The change was visible because the hydrogen-doped region became optically transparent.

“In addition to the large resistance modulation, ion doping also has potential to reversibly change the structural and electronic properties of correlated materials via an electric field by manipulating the ion diffusion process into or out of a material,” senior author Azusa N. Hattori says. In fact, this can lead to the whole area of “iontronic” devices that rely on ion motion within a solid lattice to function.

Related

Source: Osaka University

Recent Posts

Vishay Expands Automotive High Frequency Thin Film Chip Resistors

26.6.2025
16

Stackpole Releases Low VCR High Voltage Chip Resistors

23.6.2025
11

2025 Thick and Thin Film Resistor Networks Environment Overview

19.6.2025
39

Vishay Extends Axial Wirewound Resistors with WSZ Lead Form

12.6.2025
15

Bourns Unveils Automotive Thick Film on Steel

11.6.2025
34

TT Electronics Releases Failsafe and High Surge SMD MELF Resistors

10.6.2025
24

Stackpole Offers Affordable Current Sense Chip Resistors

6.6.2025
8

5th PCNS Conference Registration Now Open!

5.6.2025
36

Passive Electronic Components Lead-times Update

4.6.2025
93

Vishay Releases Automotive SMD Thick Film Power Resistor for Enhanced Protection Against Short Transient Pulses

14.5.2025
22

Upcoming Events

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version