Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    Würth Elektronik Offers Accessory Humidity Sensor Filter Cap

    Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

    Vishay Releases High Saturation 180C Automotive Inductors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Bourns Unveils High Reliability Compact Micro Encoders

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    Würth Elektronik Offers Accessory Humidity Sensor Filter Cap

    Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

    Vishay Releases High Saturation 180C Automotive Inductors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Bourns Unveils High Reliability Compact Micro Encoders

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Magnetism, Ampère’s Law and Magnetic Fields Strength

2.5.2025
Reading Time: 7 mins read
A A

The article introduces basic principles of inductive components – Magnetism, Ampère’s Law and Magnetic Fields Strength.

Magnetism

The basis for understanding inductors is provided by magnetism and a few fundamental electromagnetic field laws, revealing clear and fundamental knowledge of inductors and ferrites. The most important phenomena and laws will still perhaps be there from physics lessons:

RelatedPosts

Inductor Resonances and its Impact to EMI

Rogowski Coil Current Sensor Explained

How to Design LLC Transformer

  • Every magnet has a north and south pole (The earth is an enormous magnet!)
  • If an existing magnet is divided, a new one is created. The magnet so created also has a north and south pole. This division can be performed down to the molecular level without losing the magnetic effect.
  • Every magnet is surrounded by a magnetic field, which is represented by the field line model.
  • Magnetic field lines are closed. They neither beginning nor end. There are magnetizable materials (e.g. iron) and non-magnetizable materials (e.g. aluminum).
  • The following analysis concerns a class of magnetizable materials, the ferromagnetic materials.

Ferromagnetic materials

Figure 1. Elementary magnets
Figure 2. magnetic saturation

Every magnetic material is composed of a finite number of the smallest elementary magnets, configured randomly in the unmagnetized state. These orientate themselves under the influence of an external magnetic field.

If all elementary magnets are oriented in the magnetic field, one speaks of saturation of the material.Once the externally applied magnetic field is removed, two effects can occur:

  1. The material becomes nonmagnetic once again: One speaks of a soft magnetic material
  2. The material remains magnetic: One speaks of a hard magnetic material

Ampère’s Law and Magnetic Field Strength

Figure 3. Magnetic field strength H of a long conductor

A magnetic field is created around an electric conductor passing a current. This magnetic force field is a vector quantity perpendicular to the generating current. Field lines represent the magnetic force field. For a current carrying conductor, these form closed concentric circles.

Integrating in a counter clockwise direction along a field line, the H and each distance increment (dr) are always in the same direction. A complete circulation provides the magnetic boundary potential is shown in Figure 3.

If several conductor currents pass through the enclosed area, the sum of the currents must be on the right side of the equation (observing their directional signs):

magnetic field equation [1]

The magnetic field is measured by means of the magnetic field strength H and is defined by the currents generated by the field.

Biot-Savart Law

The field strength of any conductor configuration may be determined from the Biot-Savart Law:

Figure 4. BIOT SAVART’s Law: Describing the field strength outside a straight current conductor

Accordingly, the small section (ds) of the conductor carrying current (I) makes the contribution:

local magnetic field strength equation [2]

(alpha) is the angle between the direction of the line element (ds) and its connection (r) to the point (P) at which the field strength (dH) exists.

Magnetic Field Strength H

The magnetic field strength (H) results from integrating over the entire length of the conductor.

The contour integral of H along a closed line is equal to the total current through the area across this closed path. The magnetic field strength is given by the total current through the surface enclosed by the magnetic field line and the length of this field line.

If it is assumed that the same currents flow in N discrete conductors, as in the case of a coil, the equation simplifies to:

total magnetic field strength equation [3]

N = number of conductors within the closed path l
I = current per conductor

The unit of magnetic field strength (H) is A/m.

Examples:

Straight current conductor

Figure 5. Magnetic field strength (H) of a straight conductor

Long solenoid

Figure 6. Magnetic field strength H in a solenoid

Toroidal coil

Figure 7. Magnetic field strength H of a toroidal coil

The Figure 6. illustration shows the size of the magnetic field strength (H) inside a long solenoid to be dependent on the current I, the coil length l and the winding turns N.

Figure 8. Field strength in air and in a ferrule

Example calculation :
Ferrite sleeve 742 700 9 on a conductor with DC current of I = 10A

Sleeve dimensions:
da = 17.5 mm; di = 9.5 mm; l = 28.5 mm

Question:
What is a field strength H1 in air and field strength H2 in ferrule (centered conductor) on Figure 8.?
Answer:
The field strengths H1 in air and H2 in the ferrule are the same size. The field strength is given by:

Related

Recent Posts

Radiation Tolerance of Tantalum and Ceramic Capacitors

7.8.2025
19

Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

6.8.2025
16

Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

6.8.2025
13

Vishay Releases High Saturation 180C Automotive Inductors

6.8.2025
9

How to Calculate the Output Capacitor for a Switching Power Supply

6.8.2025
16

Additive Manufacturing of Mn-Zn Ferrite Planar Inductors

4.8.2025
11

Evaluation and Modeling of Supercapacitors for Reliability of Lifetime Predictions

4.8.2025
19

PCNS 2025 Final Program Announced!

4.8.2025
64

TDK Announced Wide Frequency Automotive Wirewound POC Inductors

30.7.2025
35

Bourns Announced Shielded Power Inductor with High Saturation and Low Radiation

30.7.2025
22

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version