Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Releases High Current Metal Alloy-based, Multilayer Power Chip Inductors

    Smiths Interconnect Extends Space-Qualified, High-Reliability Fixed Chip Attenuators 

    Samtec Expands Offering of Slim, High-Density HD Array Connectors

    Bourns Unveils High-Precision Wirewound Resistor with Long-Term Stability

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    Littelfuse Acquires Basler Electric Enhancing High-Growth Industrial Market

    DigiKey Grows Inventory with Over 31K New Stocking Parts in Q3 2025

    Murata Expands Automotive Metal Frame Y2/X1 Safety MLCC Capacitors to 500V

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Releases High Current Metal Alloy-based, Multilayer Power Chip Inductors

    Smiths Interconnect Extends Space-Qualified, High-Reliability Fixed Chip Attenuators 

    Samtec Expands Offering of Slim, High-Density HD Array Connectors

    Bourns Unveils High-Precision Wirewound Resistor with Long-Term Stability

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    Littelfuse Acquires Basler Electric Enhancing High-Growth Industrial Market

    DigiKey Grows Inventory with Over 31K New Stocking Parts in Q3 2025

    Murata Expands Automotive Metal Frame Y2/X1 Safety MLCC Capacitors to 500V

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

KEMET Brings Innovation to Magnetics

2.10.2019
Reading Time: 4 mins read
A A

Source: Kemet Electronics, Phil Lessner Linked In blog

Magnetics has been around literally forever, but here at KEMET we’ve recently seen an upswing in demand for new and more advanced magnetic products and technologies. What’s driving this demand? The quick answer is the introduction of two fast-evolving technologies: electric and autonomous vehicles, and 5G communications.

RelatedPosts

Bourns Releases High Current Metal Alloy-based, Multilayer Power Chip Inductors

Smiths Interconnect Extends Space-Qualified, High-Reliability Fixed Chip Attenuators 

Samtec Expands Offering of Slim, High-Density HD Array Connectors

KEMET makes two types of magnetics products for use in electrical applications.  The first are magnetic components used in power applications; for instance, when an inductor is paired with a capacitor in a power conversion circuit. The second are the various filters and chokes used for electromagnetic interference (EMI) control and protection.

In terms of driving demand for new products that require advanced magnetics innovation, these two areas go hand in hand. As new markets and use cases are developed that use higher switching frequencies for power supplies, we are called on to develop new, capacitors and inductors to handle the higher frequencies. And since more EMI is emitted across a wider frequency range, new and more capable EMI filters and suppressors are also required.

An automobile is already a very noisy electronics environment, with a lot of components crammed into a relatively small space under the hood. But as you introduce even more electronics into electric cars, advanced driver assist system vehicles (ADAS), and fully autonomous vehicles, the EMI noise problem gets even more challenging.

As for 5G communication systems, they can bring with them very high frequencies, such as the millimeter-wave 5G near 28 gigahertz. These frequencies generate electromagnetic interference and require new components in order to attenuate the EMI they produce.

The dark arts of magnetics

Developing new and more advanced magnetic and EMI components has its challenges, and in fact is kind of a dark art.

A lot goes into the manufacturing of magnetics products: the density of the materials, the orientation of the plates, and the ability to change the material morphology and composition to make it more effective for particular electromagnetic frequencies. New magnetics components for automobiles may require custom geometries to fit under the hood with other automotive parts; we’re also asked to produce magnetic materials that will work dependably at higher and higher temperatures, and in harsh environments. We also do a lot of work to get the right shape for an EMI component or shield, adjusting the aspect ratio and size because the magnetic properties can depend on that.

To accommodate higher frequencies, we have made changes to material composition, and in some cases the shape of the particles affects the magnetic properties, and the way that magnetic materials interact with the environment. We’ve also developed specialized materials with unique compositions to deliver magnetic components that operate at higher currents with lower losses.

It’s quite complicated to get the materials right, and a lot of tuning goes on in terms of composition. We make most of our magnetic materials in-house, using formulas that we’ve developed over years of testing and R&D.

New magnetics products from KEMET

KEMET has introduced a number of new magnetics products recently, including NANOMET™️, the most advanced nanocrystalline material that is capable of a higher saturation current and lower power loss than traditional nanocrystalline materials. NANOMET™️ is designed for use in several different forms, including in KEMET’s new METCOM inductor product line. NANOMET™️ powder provides higher performing inductors than our standard metal powder material.

NANOMET™️ plate will also be used as a reactor in electric vehicles. Reactors can be used in circuits where battery voltage needs boosted from 300 volts to 450 or 500 volts. NANOMET™️ allows us to miniaturize this component, which is important in automotive applications because of limited space under the hood.

NANOMET™️ ribbon can also be made into metal sheets, like metal foil, that could be used in transformers instead of iron cores to provide higher efficiency and lower losses.

KEMET also has a new series of Flex Suppressor products that are suitable for 5G frequencies. Our new EFS series Flex Suppressor will meet the 10 to 40GHz high frequency range requirements for 5G, and it has already been incorporated into some optical transceiver modules and base station antennas.

FlakeComposite™️ is another new advanced magnetic material from KEMET.  It’s based on the same micro-magnetic metal flakes used in our Flex Suppressor products but instead of suspending them in a flexible polymer material, we use a silicon dioxide binder to make a thin sheet that can be used for embedded inductors. The sheet of FlakeComposite™️ is so thin that it can be placed within a circuit board. This means that you can place an inductor beneath the rest of the components, instead of taking up space on the surface of the circuit board. This allows us to further miniaturize electronic devices.

KEMET has long been known for the wide variety of magnetics materials that we offer, and many OEMs value us as a trusted partner for development of custom magnetics products. This is supported not only by our expertise at material design but also by our sophisticated computer-aided design capabilities. This allows us to model custom capacitors or inductors in software and go through iterations more quickly than if we had to rely on physical prototyping alone.

While KEMET is known for its custom magnetics products, the new METCOM series of metal composite power inductors incorporates our advanced magnetics materials in standard product lines available through our regular distribution channels. Our customers can still count on KEMET as a source for custom magnetic components, but they can now also take advantage of high-quality standardized magnetic components as well.

Related

Recent Posts

Bourns Releases High Current Metal Alloy-based, Multilayer Power Chip Inductors

31.10.2025
4

Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

30.10.2025
7

Murata Expands Automotive Metal Frame Y2/X1 Safety MLCC Capacitors to 500V

30.10.2025
21

Vishay Releases Space-Grade 150 W 28V Planar Transformers

29.10.2025
14

Samsung Releases Automotive Molded 2220 1kV C0G MLCC

23.10.2025
50

How to Select Ferrite Bead for Filtering in Buck Boost Converter

23.10.2025
42

VINATech Offers Smallest 100µF Al-Hybrid Capacitor

23.10.2025
43

Vishay Unveils SMD 1200V PTC Thermistors in Compact Size

23.10.2025
11

Power Inductors Future: Minimal Losses and Compact Designs

30.10.2025
50

Bourns Unveils Automotive 3 Watt Gate Driver Transformer

22.10.2025
9

Upcoming Events

Nov 4
10:00 - 11:00 PST

Design and Stability Analysis of GaN Power Amplifiers using Advanced Simulation Tools

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

Nov 6
14:30 - 16:00 CET

Self-healing polymer materials for the next generation of high-temperature power capacitors

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version