Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Extends Rotational Life Option for its Guitar Potentiometer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

    Fischer Releases High Vibration Robust Ratchet Locking USB-C Connector System

    Littelfuse Unveils High-Use Tactile Switches with 2 Million Cycle Lifespan

    KYOCERA AVX Releases Compact High-Directivity Couplers

    Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    Wk 18 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Improving Common Mode Noise Reduction while Decreasing BOM

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Extends Rotational Life Option for its Guitar Potentiometer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

    Fischer Releases High Vibration Robust Ratchet Locking USB-C Connector System

    Littelfuse Unveils High-Use Tactile Switches with 2 Million Cycle Lifespan

    KYOCERA AVX Releases Compact High-Directivity Couplers

    Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    Wk 18 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Improving Common Mode Noise Reduction while Decreasing BOM

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

L’Oreal’s Ingenious Nail Art Battery-less Sensor Detects Harmful UV Rays

8.1.2018
Reading Time: 5 mins read
A A

source: fastcodesign news

Just about every wearable has the same flaw: The battery doesn’t last. Batteries simply aren’t powerful enough to enable the design of a svelte Apple Watch that can run for more than a day between charges. That might be fine for a single prized object on your wrist, but it can’t possibly scale to the industry’s visions of smart clothing, shoes, and jewelry.
The UV Sense, however, is a wearable designed around an amazing premise. You never charge it, and there’s no battery inside. It sticks right to your body and runs for up to four weeks, powered by the same entity it’s sensing: sunlight.

RelatedPosts

Bourns Extends Rotational Life Option for its Guitar Potentiometer

Modeling and Simulation of Leakage Inductance

Power Inductor Considerations for AI High Power Computing – Vishay Video

[Photo: L’Oréal]
Developed by L’Oreal in conjunction with the wearable tech company MC10 and the design studio Fuseproject, the UV Sense sticks onto a nail like a nail applique, and it measures the UV rays that your body is being subjected to at any given moment. To read this exposure  data, you sync the Sense with your smartphone to via NFC (near field communication) technology, the same thing used for those tap-and-go smartphone payments. The product’s digital interface will be shown at another data.L’Oreal released its first UV-tracking patch in 2016. It was the size of a Band-aid. It turned from white to blue over time, and to track exact UV exposure,  you had to photograph it with your phone. L’Oreal gave out one million free skin sensors it sent out to dozens of countries across the globe.

The UV Sense is smaller and more mindless to operate. From a technological stance, the UV Sense is built from almost nothing. It’s literally three components embedded in a drop of polymer: a sensor, a capacitor, and an antenna. The energy inside UV rays naturally activate the sensor, and their measurements are saved inside the capacitor. (Yes, capacitors store energy much like batteries, but rather than using chemicals to do so, they trap electric fields. The tradeoff is that capacitors can’t store much energy at all, but that’s not a problem for the low wattage of the UV Sense.) The antenna then transmits data to the smartphone–actually drawing its power from the smartphone’s radio signal itself.

[Photo: L’Oréal]
Of course, the technology was only part of the challenge in building the UV Sense. It also required a sleek user experience and industrial design, which fell to Yves Béhar’s team at Fuseproject.

“We always imagine the time when technology would be more discrete,” says Béhar, who has worked on landmark wearable electronics like the Jawbone Up. “And we’re definitely a few steps further with UV Sense, as far as being that tiny.”

But just because something is small doesn’t mean it should be invisible. “There’s definitely a question of, when it gets that small, what do you do with it? Where do you put it? How do you not lose it. And how does it just become embedded in your activities,” says Béhar.

Fuseproject began by considering where on the body the UV Sense could live. On your face, it might be shaded by a ballcap. On your wrist, it might find itself covered in the shadow of a jacket. The hand–or more specifically, the nail–was the best, always-nude part of one’s body. An added bonus was that nails are hard and they don’t sweat, meaning the UV Sense’s adhesive bottom could stick on one’s person for weeks at a time.

“The nail is a really, really interesting area. Because for women, it’s cosmetic…[so we could] almost treat it like nail art,” says Béhar, who points out that the UV Sense will come in all sorts of differing designs. “We also thought, well, it may become an accessory, something you attached to a pair of sunglasses, or your watch, or you can add to a friendship bracelet. We made it versatile in a sense. Not everyone is going to put it on their nail, so you can put it on accessories when you’re out in the summer, and sun.”

Bigger picture, to Béhar: The UV Sense is a model for a type of wearable we really haven’t seen before. It’s a single-serve sensor that doesn’t need a battery. This minimal approach is the antithesis of an Apple Watch–which measures all sorts of biometrics and promises countless functions, in a way that Béhar likens it to a multitasking laptop computer.

[Photo: L’Oréal]
“If you’re trying to do a lot more sensors, you will need more [size and] battery power,” says Béhar. “But I’m thinking about a place where the sensors are designed with a specialized purpose, and a combination of those are used throughout your day, body, and home, positioned and placed in the most optimal area, that speak to each other and give you, maybe even more precise data.”

It’s a feasible argument for the future of wearables–tiny, forgettable stickers we apply to wherever they’ll attach to our lives, to track only the bits of information crucial to our personal well-being. But does all of this effort really matter, considering that consumer data shows that many people tend to abandon their wearables within a few months of purchase? Maybe. In a trial run with its earlier UV patch. Namely, these UV sensors changed behaviors. 34% of users reported applying sunblock more often, and 37% reported that they stayed in the shade more. If such behaviors could stick over months or even years, it’s easy to imagine the compounded skin health benefit.

If you’d like to try the new product for yourself, the UV Sense will be available later this year for a yet-to-be announced price.

Related

Recent Posts

Littelfuse Unveils High-Use Tactile Switches with 2 Million Cycle Lifespan

9.5.2025
3

Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

6.5.2025
42

Murata and NIMS Built New Database of Dielectric Material Properties

5.5.2025
49

Tariffs Crush Sales Sentiment in April 2025 ECST Results

5.5.2025
65

Solid State Polymer Multilayer Capacitors For High Temperature Application

2.5.2025
36

Graphene-Based BOSC Bank Of Supercapacitor Cells

2.5.2025
13

Hybrid Energy Storage System for Nanosatellite Applications

1.5.2025
9

COTS-Plus Bulk Tantalum Capacitor for LEO Flight Platforms

29.4.2025
38

Würth Elektronik Offers New Power Supplies Development Kit

29.4.2025
37

High Energy Density Supercapacitors for Space Applications

28.4.2025
36

Upcoming Events

May 14
11:00 - 12:00 CEST

Reliable RIGID.flex PCBs for Critical Applications – Made in Europe

May 14
17:00 - 17:30 CEST

Calculating Foil Winding Losses with AI

May 28
16:00 - 17:00 CEST

Power Over Data Line

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • NTC/PTC Thermistors LTSpice Simulation; Vishay Video Part I

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Dielectric Constant and its Effects on the Properties of a Capacitor

    7 shares
    Share 7 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version