Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Murata Releases Worlds First 10µF/50V Automotive MLCC in 0805 Size

    Würth Elektronik Extends High Saturation Flat-Wire Power Inductors Line

    Vishay Expands Automotive High Frequency Thin Film Chip Resistors

    Advancements and Applications of Switch Capacitor Power Converters

    KYOCERA AVX Releases Robust Vertical-Mating Battery Connectors

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Samsung Delivers Silicon Capacitors to Marwell AI Systems

    Stackpole Releases Low VCR High Voltage Chip Resistors

    June 2025 Interconnect, Passives and Electromechanical Components Market Insights

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Murata Releases Worlds First 10µF/50V Automotive MLCC in 0805 Size

    Würth Elektronik Extends High Saturation Flat-Wire Power Inductors Line

    Vishay Expands Automotive High Frequency Thin Film Chip Resistors

    Advancements and Applications of Switch Capacitor Power Converters

    KYOCERA AVX Releases Robust Vertical-Mating Battery Connectors

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Samsung Delivers Silicon Capacitors to Marwell AI Systems

    Stackpole Releases Low VCR High Voltage Chip Resistors

    June 2025 Interconnect, Passives and Electromechanical Components Market Insights

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

‘Magnetic graphene’ switches between insulator and conductor

5.2.2019
Reading Time: 2 mins read
A A

Source: University of Cambridge news

Researchers have found that certain ultra-thin magnetic materials can switch from insulator to conductor under high pressure, a phenomenon that could be used in the development of next-generation electronics and memory storage devices.

RelatedPosts

Murata Releases Worlds First 10µF/50V Automotive MLCC in 0805 Size

Würth Elektronik Extends High Saturation Flat-Wire Power Inductors Line

Vishay Expands Automotive High Frequency Thin Film Chip Resistors

The international team of researchers, led by the University of Cambridge, say that their results, reported in the journal Physical Review Letters, will aid in understanding the dynamic relationship between the electronic and structural properties of the material, sometimes referred to as ‘magnetic graphene’, and may represent a new way to produce two-dimensional materials.

Magnetic graphene, or iron trithiohypophosphate (FePS3), is from a family of materials known as van der Waals materials, and was first synthesised in the 1960s. In the past decade however, researchers have started looking at FePS3 with fresh eyes. Similar to graphene – a two-dimensional form of carbon – FePS3 can be ‘exfoliated’ into ultra-thin layers. Unlike graphene however, FePS3 is magnetic.

“Magnetism in two dimensions is almost against the laws of physics, but in this material, it seems to be true” Seb Haines

The expression for electrons’ intrinsic source of magnetism is known as ‘spin’. Spin makes electrons behave a bit like tiny bar magnets and point a certain way. Magnetism from the arrangement of electron spins is used in most memory devices, and is important for developing new technologies such as spintronics, which could transform the way in which computers process information.

Despite graphene’s extraordinary strength and conductivity, the fact that it is not magnetic limits its application in areas such as magnetic storage and spintronics, and so researchers have been searching for magnetic materials which could be incorporated with graphene-based devices.

For their study, the Cambridge researchers squashed layers of FePS3 together under high pressure (about 10 Gigapascals), they found that it switched between an insulator and conductor, a phenomenon known as a Mott transition. The conductivity could also be tuned by changing the pressure.

These materials are characterised by weak mechanical forces between the planes of their crystal structure. Under pressure, the planes are pressed together, gradually and controllable pushing the system from three to two dimensions, and from insulator to metal.

The researchers also found that even in two dimensions, the material retained its magnetism. “Magnetism in two dimensions is almost against the laws of physics due to the destabilising effect of fluctuations, but in this material, it seems to be true,” said Dr Sebastian Haines from Cambridge’s Department of Earth Sciences and Department of Physics, and the paper’s first author.

The materials are inexpensive, non-toxic and easy to synthesise, and with further research, could be incorporated into graphene-based devices.

“We are continuing to study these materials in order to build a solid theoretical understanding of their properties,” said Haines. “This understanding will eventually underpin the engineering of devices, but we need good experimental clues in order to give the theory a good starting point. Our work points to an exciting direction for producing two-dimensional materials with tuneable and conjoined electrical, magnetic and electronic properties.”

The research was funded by the Engineering and Physical Sciences Research Council (EPSRC).

Reference:
C.R.S. Haines et al. ‘Pressure-Induced Electronic and Structural Phase Evolution in the van der Waals Compound FePS3.’ Physical Review Letters (2018). DOI: 10.1103/PhysRevLett.121.266801

Recent Posts

Würth Elektronik Extends High Saturation Flat-Wire Power Inductors Line

26.6.2025
1

Advancements and Applications of Switch Capacitor Power Converters

25.6.2025
7

Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

24.6.2025
9

Murata Announces 0402 Automotive Chip Ferrite Beads for V2X

19.6.2025
27

TDK Releases Automotive Power-Over-Coax Inductor for Filters

18.6.2025
19

Bourns Introduces New Automotive Grade BMS Signal Transformer

17.6.2025
14

YAGEO Releases High Isolation Transformer for 1500VDC Applications

12.6.2025
26

Exxelia to Present Smart Integrated Magnetics and MML Film Capacitors at SIAE25 

6.6.2025
37

YAGEO Unveils PulseChip LAN Transformer

6.6.2025
21

Bourns Releases Automotive Impedance Matching Transformer

6.6.2025
11

Upcoming Events

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version