Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns BTJ Thermal Jumper Chips for PCB Heat Management

    One‑Pulse Characterization of Nonlinear Power Inductors

    Wk 51 Electronics Supply Chain Digest

    Samsung Unveils World First CLLC Resonant 1kV 33nF C0G MLCC in 1210 Size

    Bourns Releases 500VDC 690VAC Fuse to Protect Power Semiconductors

    Samsung MLCC Replacing Aluminum Polymer Capacitors in AI Systems

    Reliability Improvement in BaTiO3 MLCCs Using Ni–Sn and Ni–In Alloy Electrodes

    Littelfuse Introduces Automotive Current Sensors for EV Battery, Motor, and Safety Systems

    Vishay Releases Fast Acting Thin Film Chip Fuses

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns BTJ Thermal Jumper Chips for PCB Heat Management

    One‑Pulse Characterization of Nonlinear Power Inductors

    Wk 51 Electronics Supply Chain Digest

    Samsung Unveils World First CLLC Resonant 1kV 33nF C0G MLCC in 1210 Size

    Bourns Releases 500VDC 690VAC Fuse to Protect Power Semiconductors

    Samsung MLCC Replacing Aluminum Polymer Capacitors in AI Systems

    Reliability Improvement in BaTiO3 MLCCs Using Ni–Sn and Ni–In Alloy Electrodes

    Littelfuse Introduces Automotive Current Sensors for EV Battery, Motor, and Safety Systems

    Vishay Releases Fast Acting Thin Film Chip Fuses

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Make vs buy: voltage regulators for space

29.9.2017
Reading Time: 4 mins read
A A

source: EDN article

Rajan Bedi -September 27, 2017
Previously, I compared space-grade isolated DC-DCs and switching POLs, which resulted in lots of interesting discussion between us. With so much emphasis on cost, I was recently asked by a customer to recommend discrete power transistors, op amps, transformers, inductors, and capacitors to allow the client to make bespoke voltage regulators.

RelatedPosts

Bourns BTJ Thermal Jumper Chips for PCB Heat Management

One‑Pulse Characterization of Nonlinear Power Inductors

Wk 51 Electronics Supply Chain Digest

There are many valid technical, commercial, procurement, project, and political reasons why some satellite/spacecraft manufacturers make DC-DCs instead of buying standard parts from suppliers, e.g. cost, performance, the need to access the small-signal control loop, reliability, time-to-market, export restrictions and/or the desire to develop local capability and expertise.

As an example, the synchronous, voltage-controlled buck regulator shown below comprises two FETs, an inductor, a capacitor, several resistors, a reference, and op-amps to realise an error amplifier and PWM comparator within the feedback control loop.


Figure 1
Synchronous, voltage-controlled buck regulator

Previously, I described in detail the operation of buck and boost converters and the principles of energy transfer: for any switching regulator, intrinsic component imperfections generate dc conduction losses which impact efficiency resulting in power dissipation, e.g. the FET has a finite drain-to-source resistance, RDS(ON), and the inductor has winding resistance, RDCR, both of which produce small voltage drops.

The parasitic gate capacitance of the power FET, CGD, has to be continually charged and discharged resulting in timing losses. The inductor also has an ac magnetic core loss, PSW_CORE, which increases as a function of frequency.

The value of the inductor is important and high inductance results in lower ripple current, less core losses, smaller rms currents in the switches and lower capacitance to meet the desired ripple specification. A low inductance results in less DCR, higher saturation currents, faster switching frequencies, and better transient responses.

Low-ESR ceramic capacitors reduce input and output ripple while larger bulk capacitances determine the overall transient response. The inductor and output capacitor form a second-order low-pass filter and the impedance of the latter impacts the stability of the feedback control loop.

In addition to the obvious power/current/voltage/thermal compliance rating of components, the tendency to move to higher switching frequencies to avail of smaller regulators, faster transient responses, and smaller voltage over/undershoots, places even greater demands on the specifications of the discrete parts. While switching regulators process dc line and load voltages, their internal operation is switching large currents at MHz speeds and the use of shielded magnetics minimise EMI.

The selection of the components is very application specific, they all contain parasitics and I explain the criteria to select discrete parts in my power course. Today, there are approximately 10 suppliers of space-grade FETs, eight providers of qualified op amps, five vendors of Hi-Rel inductors, and eight manufacturers of space-grade capacitors. Depending on the fabrication technology and the mission’s radiation requirements, some low-cost, COTS FETs can also be considered for the switch and the transistor, which replaces the freewheeling diode. The specifications for both differ.

As a second example, the voltage-controlled linear regulator shown below comprises an NPN bipolar pass transistor, an output bypass capacitor, two feedback resistors, an op-amp, and a reference to provide regulation.


Figure 2
Voltage-controlled linear regulator

Depending on the application, i.e. input voltage, dropout, ground current, noise, and PSRR, more efficient and cleaner component options may exist, e.g. the use of a PNP transistor or a PMOS FET for the pass element.

Different capacitor options are available each with specific temperature and voltage behaviours. Low ESR minimises ripple and affects the stability of the feedback control loop.

Today, there are approximately 10 suppliers of space-grade BJTs and six providers of qualified references. Depending on the fabrication technology and the mission’s radiation requirements, some low-cost COTS parts can also be considered for the pass transistor, e.g. SiGe.

While an integrated POL offers advantages in PCB footprint, lower parasitics, and a smaller BOM, some OEMs prefer or have to make their own regulators. The arguments for making vs. buying are equally valid. Proprietary designs realised using discrete components have been operating successfully in-orbit for many years.

As an example, modular and discrete COTS buck regulators (Vin=+24 V, Vout=+3.3 V and Iload = 3 A) are shown below: the former has integrated the inductor while the latter contains an IC controller. Both designs contain 10 parts with the BOM for the discrete implementation costing $4.14. The modular one has a price of $10.19 and is approximately one-third smaller.


Figure 3
Modular vs. discrete buck regulators

The cost and area differentials are more extreme for space-grade equivalents and I compare a number of qualified integrated vs. discrete designs, and show you how to successfully design space-grade and COTS-based isolated DC-DCs and POLs in my power course. I also reveal and compare all the suppliers of qualified integrated regulators as well as providers of discrete components to help to you make reliable, low-cost, bespoke, space-grade DC-DCs/POLs.

Rajan Bedi is CEO of Spacechips Ltd, which provides industrial R&D and space electronics design consultancy services to manufacturers of satellites and spacecraft around the world.

Related

Recent Posts

Bourns BTJ Thermal Jumper Chips for PCB Heat Management

22.12.2025
35

One‑Pulse Characterization of Nonlinear Power Inductors

22.12.2025
28

Samsung Unveils World First CLLC Resonant 1kV 33nF C0G MLCC in 1210 Size

19.12.2025
48

Samsung MLCC Replacing Aluminum Polymer Capacitors in AI Systems

19.12.2025
61

Reliability Improvement in BaTiO3 MLCCs Using Ni–Sn and Ni–In Alloy Electrodes

19.12.2025
38

Mechanical Testing of Tantalum Anodes to Predict Tantalum Capacitor Quality

17.12.2025
32

Coilcraft Releases Worlds Smallest 0402 Ferrite-Core Wirewound Chip Inductor

17.12.2025
38

Jianghai Offers Custom Bottom Cooled Screw Aluminum Capacitors

17.12.2025
43

TDK Unveils Vibration-Resistant Hybrid Polymer Aluminum Capacitors

15.12.2025
33

Upcoming Events

Jan 27
16:00 - 17:00 CET

Simplifying Vehicle Development with Automotive Ethernet and Zonal Smart Switch Technologies

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version