Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Extends Rotational Life Option for its Guitar Potentiometer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

    Fischer Releases High Vibration Robust Ratchet Locking USB-C Connector System

    Littelfuse Unveils High-Use Tactile Switches with 2 Million Cycle Lifespan

    KYOCERA AVX Releases Compact High-Directivity Couplers

    Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    Wk 18 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Improving Common Mode Noise Reduction while Decreasing BOM

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Extends Rotational Life Option for its Guitar Potentiometer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

    Fischer Releases High Vibration Robust Ratchet Locking USB-C Connector System

    Littelfuse Unveils High-Use Tactile Switches with 2 Million Cycle Lifespan

    KYOCERA AVX Releases Compact High-Directivity Couplers

    Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    Wk 18 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Improving Common Mode Noise Reduction while Decreasing BOM

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

MOSFETs as the best automating balancing solution for supercapacitors

1.3.2019
Reading Time: 4 mins read
A A

Source: Electronic Products news

By Robert Chao, president and founder, Advanced Linear Devices, Inc. MOSFETs lower the operating bias voltage of the supercapacitor, balancing the circuit’s power burn, and can automatically adjust to temperature, time, and environmental changes.

RelatedPosts

Bourns Extends Rotational Life Option for its Guitar Potentiometer

Modeling and Simulation of Leakage Inductance

Power Inductor Considerations for AI High Power Computing – Vishay Video

Design teams are now eyeing supercapacitors for a range of new products in energy harvesting, office automation, backup systems, and more. These supercapacitor cells provide efficient storage that can quickly discharge energy on demand. To ensure peak performance and a long product life cycle, the supercapacitor’s voltage must be balanced. If an imbalance occurs due to leakage current differences between the cells, an energy drain could be triggered, causing the supercapacitor cells to fail prematurely.

Supercapacitors, also known as ultracapacitors, provide high power, rapid charging and discharging, peak-power shaving, and backup power functions for mission-critical data-protection and battery-backup applications. They are becoming a popular choice for applications in which the need for power doesn’t exceed 30 seconds.

Supercapacitors are also raising the bar on energy density. As the cells gradually increase power density, they can buffer and store energy more effectively — thus maximizing energy-gathering efforts.

Here’s the rub: Each supercapacitor has a tolerance difference in capacitance, internal resistance, and leakage current. This may create an imbalance in cell voltage. Supercapacitors must be balanced to ensure that the voltage doesn’t exceed the supercapacitor’s maximum voltage rating.

Power system designers should select supercapacitors from the same manufacturer to make sure that the initial cell voltage values fall into a similar range. Second, there must be compensation for any cell voltage imbalance caused by leakage current in individual cells.

There are two types of balancing methods used to regulate voltage in supercapacitor cells: active and passive. A low-value resistor is used in a passive balancing method. This method dissipates power and doesn’t respond to the temperature variations. Active balancing techniques are achieved with operational amplifiers (op-amps) or current balancing using MOSFETs.

Below are two scenarios with supercapacitors stacked in a series. The first scenario presents supercapacitors with auto-balancing, and the second presents supercapacitors without auto-balancing. The differences between these two design scenarios will demonstrate the need for a balancing method that automatically corrects the effects of changing leakage currents.

Supercapacitors without auto-balancing
Leakage current can cause voltage imbalance and power dissipation. Power system designers must compensate for the leakage current from each individual supercapacitor cell. Otherwise, the supercapacitor’s operating life can be reduced or even permanently damaged if the excess voltage surpasses the rated voltage of a cell for a prolonged time period.

The below illustration (Fig. 1) presents two supercapacitors connected in series without the aid of an auto-balancing mechanism. It depicts how the leakage current moves up and down with differential voltage. If not balanced, this issue can cause failure due to overvoltage effects.


Fig. 1: A view of two supercapacitors connected in series without an auto-balancing mechanism.

Fig. 1 illustrates that at 2.3 V, the upper supercapacitor has a leakage current of 1.6 µA, while the lower supercapacitor exhibits leakage current of 0.8 µA. If these two supercapacitors don’t balance and equalize the leakage current, the lower supercapacitor can permanently fail due to the excessive voltage.

Supercapacitors with auto-balancing
Fig. 2 illustrates how MOSFETS balance supercapacitors by lowering the operating bias voltage of the supercapacitor, thus balancing the circuit’s power burn.


Fig. 2: Two supercapacitors connected in series accomplish superior auto-balancing using a MOSFET chip.

Supercapacitors without auto-balancing, denoted by the dotted horizontal line above, can subsequently damage cells due to overvoltage. The solid horizontal line marks the current balancing operation using a MOSFET device. When a MOSFET is connected across a supercapacitor in an array, a small rise in voltage caused by leakage current from another supercapacitor leads to a larger decline in on-resistance (RDS(ON)) of that MOSFET. This causes a hike in the supercapacitor’s current, subsequently reducing the voltage.

The principle of auto-balancing uses the natural threshold characteristics of the MOSFET device. At the threshold voltage, the MOSFET turns on and starts to conduct a current. That feature ensures that there is little or no additional leakage current from the MOSFET chip.

Fig. 2 also shows how the op-amp voltage-balancing method forces the two supercapacitor cells to reach the same voltage at the mid-point of 2.3 V. However, in doing so, the two cells consume some power. If the capacitance of the two cells is not adequately balanced, that causes additional power burn. Consequently, there is a significant waste of energy during the process of automated balancing with the op-amps. In addition, op-amps dissipate power themselves through their circuit networks.

Unlike op-amps, which can cause a power penalty if there is a mismatch between the capacitance values of two cells, MOSFETs enable natural cell balancing through complementary opposing current levels.

In addition, supercapacitor cell 1 and supercapacitor cell 2 in Fig. 2 are interchangeable. Therefore, it is unknown which one has more leakage current. Some of the current comes from the MOSFET itself, not supercapacitor cell 2.

The MOSFET-based leakage current balancing mechanism is fully automated, and it works with nearly all supercapacitors. This auto-balancing technique requires no additional current drain, and it can automatically adjust to temperature, time, and environmental changes.

From MOSFET to board

Plug-and-play printed circuit boards (PCBs) can be populated with MOSFETS that automatically balance leakage current and voltage of supercapacitor cells. A single MOSFET or multiple MOSFETs can be mounted on the supercapacitor automatic balancing (SAB) PCBs to automatically balance the supercapacitor cells.

 

 

Fig. 3 on left: A block diagram of an SABMB2 board, measuring 0.6 × 1 inch, for supercapacitor automatic balancing.

As an example, ALD’s plug-and-play SAB PCBs can be used for prototyping or production designs. These boards can be cascaded to form a series chain, ranging from two to hundreds for balancing supercapacitor stacks.

Related

Recent Posts

Modeling and Simulation of Leakage Inductance

9.5.2025
1

Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

6.5.2025
36

Murata and NIMS Built New Database of Dielectric Material Properties

5.5.2025
46

Tariffs Crush Sales Sentiment in April 2025 ECST Results

5.5.2025
61

Solid State Polymer Multilayer Capacitors For High Temperature Application

2.5.2025
32

Graphene-Based BOSC Bank Of Supercapacitor Cells

2.5.2025
13

Hybrid Energy Storage System for Nanosatellite Applications

1.5.2025
9

COTS-Plus Bulk Tantalum Capacitor for LEO Flight Platforms

29.4.2025
38

Shielding Cabinets

29.4.2025
17

Magnetic Shielding and Magnetic Shielding Sheets

29.4.2025
26

Upcoming Events

May 14
11:00 - 12:00 CEST

Reliable RIGID.flex PCBs for Critical Applications – Made in Europe

May 14
17:00 - 17:30 CEST

Calculating Foil Winding Losses with AI

May 28
16:00 - 17:00 CEST

Power Over Data Line

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Solid State Polymer Multilayer Capacitors For High Temperature Application

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version