Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Overvoltage and Transient Protection for DC/DC Power Modules

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Skeleton Opens SuperBattery Factory in Finland 

    Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

    Murata Expands High Rel NTC Thermistors in Compact 0603M Size

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Overvoltage and Transient Protection for DC/DC Power Modules

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Skeleton Opens SuperBattery Factory in Finland 

    Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

    Murata Expands High Rel NTC Thermistors in Compact 0603M Size

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

8.10.2025
Reading Time: 4 mins read
A A

prof. Sam Ben-Yaakov provides an intuitive explanation of the multiphase Buck Trans-Inductor voltage regulator (TLVR).

Relevant videos:

RelatedPosts

Capacitor Self-balancing in a Flying-Capacitor Buck Converter

Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

Over-Voltage Protection Clippers, Clampers, Snubbers, DC Restorers

  • Leakage Inductance of Transformers and Coupled Inductors Explained
  • Interleaved Multiphase PWM Converters Explained

Introduction

The Trans-Inductor Voltage Regulator (TLVR) represents a significant evolution in multiphase buck converter design, particularly for high-current, low-voltage applications such as server CPUs. This white paper provides an intuitive yet technically rigorous explanation of TLVR operation, modeling, and performance characteristics, based on the work of Prof. Sam Ben-Yaakov.

Key Points

  • TLVR integrates coupled inductors with secondary windings to enhance transient response.
  • Interleaved multiphase operation reduces output ripple and improves efficiency.
  • Transformer modeling enables intuitive understanding of current reflection and ripple behavior.
  • Simulation results demonstrate superior IDT (di/dt) performance compared to classical multiphase buck converters.

Chapter 1: Classical Multiphase Buck Converter Overview

Traditional multiphase buck converters use interleaved half-bridge stages with discrete inductors. Each phase contributes to the output current, and interleaving reduces ripple through partial cancellation. However, during step-load events, the response time is limited by the inductance and control loop bandwidth.

The output voltage dip during a load transient can be described by: ΔV = ESR × ΔI + ESL × dI dt

Chapter 2: TLVR Topology and Modeling

TLVR introduces coupled inductors with secondary windings connected in series and loaded by a common inductor. Each primary winding receives a PWM pulse from its respective half-bridge. The secondary voltages are summed and reflected back to the primaries, enhancing the transient response.

The equivalent circuit model includes:

  • Primary magnetizing inductance Lm
  • Secondary leakage inductance Llk
  • Ideal transformer coupling

The total secondary inductance becomes: Ltotal = Lc + n × Llk

Chapter 3: Ripple Behavior and Duty Cycle Effects

Ripple cancellation is most effective when the duty cycle fills the switching period evenly across all phases. For a 4-phase TLVR, optimal ripple reduction occurs at duty cycles of 0.25, 0.5, and 0.75. At these points, the summed secondary voltage approximates a flat DC level.

Simulation results show:

Duty CycleSecondary Ripple (RMS)Primary Ripple (RMS)
0.10HighHigh
0.25LowLow
0.50MinimalMinimal

Chapter 4: Step Load Response and IDT Enhancement

TLVR demonstrates superior step-load response due to the parallel reflection of secondary current into all primary phases. When one phase receives an increased PWM pulse, the resulting secondary current is reflected across all primaries, amplifying the effective di/dt.

Measured IDT performance:

TopologyIDT (A/μs)
Classical Multiphase267
TLVR1000

Chapter 5: Control Implications and Nonlinear Strategies

Advanced control strategies can exploit TLVR’s architecture by activating all phases simultaneously during transients. This nonlinear control maximizes IDT and minimizes voltage droop. However, stability and loop compensation require careful design due to the complex interactions between phases and coupled inductors.

Conclusion

TLVR offers a compelling alternative to classical multiphase buck converters, especially in applications demanding rapid transient response and low output ripple. While further work is needed to compare magnetics, cost, and control complexity, the intuitive modeling and simulation results confirm TLVR’s potential for next-generation voltage regulation.

Related

Source: Sam Den-Yaakov

Recent Posts

Overvoltage and Transient Protection for DC/DC Power Modules

13.11.2025
19

Choosing the Right Capacitor: The Importance of Accurate Measurements

12.11.2025
35

RF Inductors: Selection and Design Challenges for High-Frequency Circuits

10.11.2025
44

Transformer Safety IEC 61558 Standard

7.11.2025
21

ESR of Capacitors, Measurements and Applications

7.11.2025
89

3-Phase EMI Filter Design, Simulation, Calculation and Test

6.11.2025
71
Image credit: Samtec

How to Match the Right Connector with Protocol Requirements

6.11.2025
19

Coilcraft Introduces Ultra-Low Loss Shielded Power Inductors

6.11.2025
25

Exxelia Presents Smart Integrated Magnetics Solution at Space Tech Expo 2025 

5.11.2025
19

Upcoming Events

Dec 2
December 2 @ 12:00 - December 4 @ 14:15 CET

Microwave Packaging Technology

Dec 9
December 9 @ 12:00 - December 11 @ 14:15 EST

Space and Military Standards for Hybrids and RF Microwave Modules

Dec 10
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version