Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Modelithics Releases COMPLETE Library v25.6 for Keysight ADS with 14 New Scalable Models

    Knowles Releases High Q Non-Magnetic X7R MLCCs for Medical Imaging

    Researchers Developed Reduced Graphene Oxide (rGO) High Energy Density Graphene Supercapacitors

    Samtec Agreed with Molex Second-Source License on High-Speed Interconnects for Data Centers

    Panasonic Industry Releases Highest Capacitance 63V Conductive Polymer Tantalum Capacitors in 3mm Height

    August 2025 ECIA US Components Sales Sentiment Remains Strong

    Vishay Releases Industry First Automotive SMD Y1 Safety Ceramic Capacitors

    Researchers Enhanced 2D Ferromagnets Performance

    Bourns Releases Two High Current Common Mode Choke Models

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Modelithics Releases COMPLETE Library v25.6 for Keysight ADS with 14 New Scalable Models

    Knowles Releases High Q Non-Magnetic X7R MLCCs for Medical Imaging

    Researchers Developed Reduced Graphene Oxide (rGO) High Energy Density Graphene Supercapacitors

    Samtec Agreed with Molex Second-Source License on High-Speed Interconnects for Data Centers

    Panasonic Industry Releases Highest Capacitance 63V Conductive Polymer Tantalum Capacitors in 3mm Height

    August 2025 ECIA US Components Sales Sentiment Remains Strong

    Vishay Releases Industry First Automotive SMD Y1 Safety Ceramic Capacitors

    Researchers Enhanced 2D Ferromagnets Performance

    Bourns Releases Two High Current Common Mode Choke Models

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Optimization of 500W LLC Transformer – Case Study

10.10.2023
Reading Time: 8 mins read
A A

In this article Frenetic power electronics engineer Sotiris Zorbas, MSc try to identify the weak spot of 500W LLC Transformer design nad propose new construction design as a case study of transformer design optimization.

Referring to Texas Instruments application note for a 500W LLC Half bridge (PMP40379)1 power supply I started off searching through the app note to see if I could find some info about the magnetic components.

RelatedPosts

Common Mistakes in Flyback Transformer Specs

Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

How to design a 60W Flyback Transformer

Without having a clear image about the transformer materials or the exact construction, I tried to simulate a compatible transformer to get similar results and see if we can improve the design further.

In Table 1 you can have a look at the most relevant specs for the construction of the transformer:

Table 1. Relevant specification of 500W LLC transformer

Transformer Thermal Simulation

Figure 1 shows the Frenetic simulation and an actual thermal picture of the transformer for the same operating conditions.

Figure 1. Performance of the simulated transformer VS app note thermal image

We predict that the maximum hotspot temperature is in the center leg of the transformer at 94°C (we can’t see that in the image). The windings temperature is predicted at 88°C, while they appear to be at 94-99°C and the core surface temperature is really close to the actual one, around 78-80°C.

DISCLAIMER: The exact Litz wire dimensions and winding arrangements were unknown from the online material, so any differences in temperature can be easily explained in this case. Despite this fact, the overall temperature behavior of this design is in line with the actual transformer behavior.

The main idea of this simulation was to get as close as possible to the actual transformer built for the Texas Instruments app note, and not to optimize it! What I needed was a starting point to make iterations later.

Transformer Design Improvements

In the next step, I will focus on the weak points of this transformer, trying to improve the design and to realize a more efficient component!

Now the question is, where is the design’s weak spot? And by weak spot I mean looking at the temperature at different places on the Transformer. Focusing on the Transformer thermal image under test, we can easily notice a ~20°C difference between the temperature of the windings and the one of the core. In the simulation, which again isn’t an exact one because of the lack of data, we can come up with an observation about the hotspot location at the center leg of the Transformer.

The core losses elevate the core temperature. The skin, proximity and fringing losses elevate the temperature at the windings. But the windings and the core conduct heat between them because they are thermally coupled with the bobbin as a medium.

That said, the weak spot of many Transformer designs is usually located in the center leg. That’s the area where we don’t have any air convection, plus the fact the center leg is in contact with the bobbin, which can easily make the temperature rise even more.

Therefore, the hypothesis is that the weak spot here is the temperature of the center leg. That is not obvious in the thermal image, but it is clear in the simulation graph on the right. That might be true, but unfortunately there isn’t a way to just lower the temperature of the Transformer’s center leg.

What can we do?

  • Plan A: Decrease the core losses.
  • Plan B: Decrease the winding losses.
  • Plan C: Decrease both the core and the winding losses.
  • Plan D: Change the ratio of losses closer to 50-50, keeping the total losses (core + winding) approximately the same.
  • Plan E: Change the ratio of losses closer to 50-50 and decrease the total losses.

Out of the five options, Plan E is definitely the best one, and I’ve decided this will be my approach in this case: lowering the core and the winding losses, whilst trying to keep a 50-50 balance. Seeking to list the other plans by effectiveness is debatable, and it depends on the design.

The game of conflicts

Let’s focus on the plan now. Plan E’s mission starts with lowering the core losses.

To control the flux density, we must change the number of primary/secondary turns. That means that the wire length used for the Transformer is longer, resulting in more resistance and more losses in the windings.

Figure 2. Increasing the turns affects power losses

I aimed at increasing the number of turns to a point where core losses decrease, but not so much as to cause an abrupt increase in winding losses. How aggressively we increase the turns of the primary (and the secondary to maintain the turns ratio) is going to dictate if the winding losses will increase a lot or not.

We can see in Figure 2 that 57% of the losses are from the core, and 43% of the losses are from the winding. Although the ratio of losses isn’t that bad, the core losses by themselves (in Watts) are significant. That is supported by the fact that the peak flux density swings, which dictates that the core losses are close to 200mT. Literature suggest 100-150mT as a nice operating point. There is no reason why we cannot operate at 200-250mT whatsoever, except the fact that the core losses increase roughly at about the 2.7th power of the flux density swing.

I run the numbers going from 200mT -> 150mT and that would equate to 50-55% less core losses for the same core. But my goal is to go from 24T to 30T at the primary, which is problematic given the bobbin space that I have. Truth is, initially I went for it and changed the windings, only to realize that the space of the bobbin forced me to change the windings altogether. That increased the winding losses more than I was comfortable with, meaning that at the end the total power losses didn’t decrease so much.

Therefore, I picked a slightly bigger core. I was lucky enough that the next standard core didn’t have much bigger dimensions, as shown in Figure 3. What it does have though is 34% higher volume and 22% more effective area (Ae) which is what we are actually interested in.

Figure 3. Old vs New transformer core.
Faradays’ law applied to transformer number of turns

As Faraday’s simply suggests, the number of primary turns for a 22% increased Ae will decrease by 18%. In other words, we need less turns for the same operating ∆Bpk.

OLD vs NEW 500W LLC Transformer Design Performance Comparison

You can find all the Magnetics that we design in our Newsletters in the Frenetic Library section.

To get to the point now I choose 28T for the primary turns, that translates into 137mT of flux density swing. Given the fact that the bobbin space has increased (Figure 3) as well, I’ll give this solution a try. In Figure 4 you can see comparison between the two designs.

Figure 4. Old vs New LLC transformer performance and specs.

Conclusion

What have we achieved here in the new LLC transformer version?

  • Core losses dropped by 1.27W or by 46%.
  • Winding losses stayed the same!
  • Total losses decreased by 26.4%

PLAN E was successfully achieved!

Moreover:

  • Transformer dimensions increased only by WxHxD(mm): 6×3.5×4.8
  • The hotspot temperature dropped to 59°C from 88°C (natural convection)

References

  1. Texas Instruments, September 2018, “500-W, Single Stage LLC Power Supply Reference Design for Audio Amplifier”, PMP40379

Related

Source: Frenetic

Recent Posts

Modelithics Releases COMPLETE Library v25.6 for Keysight ADS with 14 New Scalable Models

18.9.2025
1

August 2025 ECIA US Components Sales Sentiment Remains Strong

18.9.2025
5

Researchers Enhanced 2D Ferromagnets Performance

16.9.2025
5

Bourns Releases Two High Current Common Mode Choke Models

16.9.2025
8

Electronics Weekly Announcing Finalists for Elektra Awards 2025

16.9.2025
9

Exxelia Exhibit at Electronica India September 17–19, 2025

15.9.2025
28

Würth Elektronik Announces 2025 Digital WE Days Virtual Conference

15.9.2025
12

5th PCNS Awards Outstanding Passive Component Papers

17.9.2025
64
source: Samtec

Best Practices for Cable Management in High-Speed and High-Density Systems

4.9.2025
22

Würth Elektronik Unveils Compact Common-Mode Data Lines Chokes

3.9.2025
36

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version