Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Würth Elektronik Opens Branch in South Africa

    Comparative display of a grain size and domain structure; b free energy; c P-E loops after high-entropy ceramics (HECs) and PGS design. source: Nature Communications  ISSN 2041-1723

    Researchers Propose Novel MLCC Dielectric Design to Increase Energy Storage Capacity

    Stackpole Unveils 1W High Power Density Current Sense Chip Resistor

    Bourns Releases New 150C Shielded Power Inductors

    iNRCORE Releases New Range of 1KW HiRel Planar Transformers

    Murata Releases In-vehicle Compact Crystal in 2016 Size

    Vishay Releases Industrial-Grade 3/8 Square Single-Turn Cermet Trimmer

    July 2025 Interconnect, Passives and Electromechanical Components Market Insights

    Samsung Electro-Mechanics Focuses MLCCs on AI servers and Automotive

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Würth Elektronik Opens Branch in South Africa

    Comparative display of a grain size and domain structure; b free energy; c P-E loops after high-entropy ceramics (HECs) and PGS design. source: Nature Communications  ISSN 2041-1723

    Researchers Propose Novel MLCC Dielectric Design to Increase Energy Storage Capacity

    Stackpole Unveils 1W High Power Density Current Sense Chip Resistor

    Bourns Releases New 150C Shielded Power Inductors

    iNRCORE Releases New Range of 1KW HiRel Planar Transformers

    Murata Releases In-vehicle Compact Crystal in 2016 Size

    Vishay Releases Industrial-Grade 3/8 Square Single-Turn Cermet Trimmer

    July 2025 Interconnect, Passives and Electromechanical Components Market Insights

    Samsung Electro-Mechanics Focuses MLCCs on AI servers and Automotive

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Panasonic releases new conductive polymer hybrid aluminum electrolytic capacitors with the industry’s largest capacitance

17.7.2019
Reading Time: 3 mins read
A A

Source: Panasonic news

Panasonic will launch mass production of large-capacitance conductive polymer hybrid aluminum electrolytic capacitors in August 2019. The increased capacitance will enable reduction in the number of capacitors necessary and compact size, contributing to the downsizing of automotive ECUs.
Osaka, Japan – Panasonic Corporation announced today that its Industrial Solutions Company has commercialized the new ZKU series of large-capacitance conductive polymer hybrid aluminum electrolytic capacitors for use in automotive ECUs (electronic control units), etc. and will launch mass production in August 2019.

RelatedPosts

Würth Elektronik Opens Branch in South Africa

Researchers Propose Novel MLCC Dielectric Design to Increase Energy Storage Capacity

Stackpole Unveils 1W High Power Density Current Sense Chip Resistor

With increased capacitance, the largest product of this series with ϕ10 x 10.2 mm and smallest product with ϕ5 x 5.8 mm will respectively achieve reduction in the number of necessary capacitors and downsizing from the conventional standard products (ZC series), contributing to the downsizing of automotive ECUs.

Conductive polymer hybrid aluminum electrolytic capacitors feature low resistance and high reliability through the fusion of conductive polymer and electrolyte and are used in a wide range of applications, from control circuits in automotive engine ECUs, BMSs (battery management systems) to motor drive circuits in electric pumps, radiator fans, and further to ADAS applications (such as cameras, sensors, and control circuits).

The progress in the electrification of automobiles has led to redundant design aiming to improve the safety and reliability. As a result, more and more ECUs are used in a single car, due to the mounting of two identical ECUs, for example. Design for downsizing boards is necessary for securing mounting space, which requires reductions in the number and size of capacitors and large current.

To respond to these requirements, Panasonic has commercialized the ZKU series of conductive polymer hybrid aluminum electrolytic capacitors with the industry’s largest capacitance* by using its electrode foil large-capacitance technology.

Panasonic’s new conductive polymer hybrid aluminum electrolytic capacitors (ZKU Series) have the following features:

  • These capacitors with the industry’s largest capacitance* enable reductions in the number and size of capacitors necessary, contributing to board area reduction.
  • The capacitors have achieved large capacitance, i.e., 50% or more larger than the company’s existing ZC series capacitors and 20% or more larger than the ZK series products.
  • These capacitors maintain the large current and high reliability of the conventional products, contributing to board area reduction.
  • The capacitors have achieved large currents, i.e., 1.3 times as much as those of the conventional ZC series products and equivalent to those of the ZK series.

*As conductive polymer hybrid aluminum electrolytic capacitors as of July 16, 2019 (according to research by Panasonic)

Product Features

These capacitors, with the industry’s largest capacitance*, enable reductions in the number of required capacitors and their size, contributing to a reduction in board area.

Increasing the capacity of electrode foil by using an electrode foil area expansion processing technology has allowed the capacitors to achieve large capacitance, i.e., larger than those of the conventional ZC series products by 50% or more and ZK series by 20% or more.

This enables a reduction in the number of required capacitors, from the use of several capacitors in parallel, as well as reduction in the size of capacitors with the same rating, thereby contributing to board downsizing.

These capacitors maintain the large current and high reliability of the conventional products, contributing to a reduction in board area.

The capacitors have adopted the large current and high reliability design of conventional conductive polymer hybrid aluminum electrolytic capacitors (ZK series) corresponding to the large current, achieving large currents 1.3 times as much as those of conventional ZC series products and equivalent to those of the ZK series.

This enables a reduction in the number of required capacitors, from the use of several capacitors in parallel, as well as a reduction in the size of capacitors with the same rating, thereby contributing to board downsizing.
Suitable applications:

Voltage stabilization at ECU power supply input sections (input filter), current stabilization in motor drive circuits (DC-Link), etc.

Related

Recent Posts

Comparative display of a grain size and domain structure; b free energy; c P-E loops after high-entropy ceramics (HECs) and PGS design. source: Nature Communications  ISSN 2041-1723

Researchers Propose Novel MLCC Dielectric Design to Increase Energy Storage Capacity

24.7.2025
3

Stackpole Unveils 1W High Power Density Current Sense Chip Resistor

24.7.2025
1

Bourns Releases New 150C Shielded Power Inductors

24.7.2025
2

iNRCORE Releases New Range of 1KW HiRel Planar Transformers

24.7.2025
4

Murata Releases In-vehicle Compact Crystal in 2016 Size

23.7.2025
5

Vishay Releases Industrial-Grade 3/8 Square Single-Turn Cermet Trimmer

23.7.2025
1

July 2025 Interconnect, Passives and Electromechanical Components Market Insights

23.7.2025
14

Samsung Electro-Mechanics Focuses MLCCs on AI servers and Automotive

22.7.2025
20

Modelithics Library Expands with 120 New Models

22.7.2025
4

Exxelia Offers High-Q RF Microwave Capacitors for High Reliability Applications

21.7.2025
22

Upcoming Events

Jul 29
16:00 - 17:00 CEST

Impact of Elevated Voltage and Temperature on Molded Power Inductors in DC/DC converters

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version