Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Vishay Releases Miniature SMD Trimmers for Harsh Environments

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Stackpole Extends Voltage of High Temp Chip Resistors

    High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

    Bourns Releases High Power High Ripple Chokes

    KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Vishay Releases Miniature SMD Trimmers for Harsh Environments

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Stackpole Extends Voltage of High Temp Chip Resistors

    High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

    Bourns Releases High Power High Ripple Chokes

    KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Pros and Cons of MLCC Downsizing; AVX Tech Paper

20.1.2021
Reading Time: 4 mins read
A A

Advantages and disadvantages of MLCC downsizing is discussed in AVX technical papers written by Frank Hodgkinson and Maureen Strawhorne.

Abstract:

As integrated circuits (ICs) continue to pack more functionality into smaller packages, the need for bulk off-chip capacitance remains. In resonant circuits, such as phase-lock-loops (PLLs) and switching regulators, precision class one ceramic capacitor may be required.

RelatedPosts

The Tantalum Supply Chain: 2021 Global Market Update

KEMET Design it Day: Capacitors and Inductors Selection Guide for Decoupling And Filtering

Tantalum Capacitors Explained; Kemet Webinar

Such capacitors must maintain a tight capacitance range over process, voltage, and temperature variation (PVT) for the host IC to meet its performance specifications. In contrast, class two ceramic capacitors are required for nearly every IC in the form of decoupling and bypass capacitance. They may also be found in amplifier circuits, simple filters, and linear regulators where their function is less dependent on tightly specified impedance requirements.

Such requirements for class two capacitors often create a trap for the unwitting designer, who might naturally focus on voltage rating, size, and cost when choosing these devices. This is especially true when the top-level application is overly constrained by form factor. One can imagine the selection filtering process: start with an approximate capacitor value (i.e., 100 nF), choose a voltage rating with some reasonable headroom (i.e., 6.3 V), and finally, find the smallest surface mount (SMT) package (i.e., 0402) and cost combination to create room for other components and PCB routing.

Considering voltage rating and capacitance separately from package size may seem reasonable, but therein lies the potential trap. As capacitor sizes have grown smaller and smaller, manufacturers have developed new technologies to increase capacitance density to achieve standard value-package combinations. In doing so, dependencies have also been introduced that may create unexpected surprises during testing.

Tradeoffs in Capacitance Density

High permittivity is mainly a function of dielectric choice. Typical ceramic materials, titanium dioxide, for example, exhibit relative permittivity values in the tens. Ferroelectric materials, on the other hand, can achieve relative permittivities in the thousands. Most modern MLCCs are constructed using Barium Titanate (BaTiO3), which can yield relative permittivity values up to 7,000. In fact, much of the capacitor manufacturing expertise lies in the milling, casting, and sintering of this insulator.

Materials research and optimization will undoubtedly continue to provide enhanced dielectric properties in the future. Still, the primary knobs for maximizing capacitance density are the number of layers and the layer spacing. In the mid-1990s, minimum layer thicknesses were in the 5-micron range, and common capacitor values were built from several hundred layers. Nearly two decades later, the thickness of the minimum layer was reduced by a factor of ten, and capacitors with more than one thousand layers were not unusual. This miniaturization trend comes with significant tradeoffs that must be considered when selecting MLCCs during the design cycle.

As layer thicknesses are reduced, the electric field strength through the dielectric is increased for the same applied voltage. Since the dielectric materials are typically ferroelectric, their permittivity reduces as electric field strength increases. Therefore, the same capacitor in a 0402 package will have poorer voltage dependence characteristics compared to a 0805 package. At high voltages, this can be particularly problematic. An example is shown below, where a 0402 capacitor has lost 90% of its capacitance capability at an applied voltage of 50V.

Capacitance Change with DC Voltage for 0.1uF 0402 to 1210

Similar trends are seen when looking at the temperature performance of size reduced MLCC’s. The figure below demonstrates how for the same capacitance, a 0603 package loses nearly double the effective capacitance compared to an 1812 package at high temperatures.

Temperature Characteristic for 1uF 25v X7R: 0603 to 1812 styles

The story doesn’t end there. Miniaturization of capacitors has a deleterious effect on numerous other performance parameters, including ripple current handling capability, ESD protection, and electrical strength. Many of these weaknesses are particularly noticeable in high voltage and high power applications. Of greater concern than the performance tradeoffs is the potential for failure over time, especially in safety-critical systems.

The following figure depicts the failure rate of a typical one microfarad capacitor compared to its dielectric thickness, which is directly correlated to package size. As the size moves from 1812 to 0603, the failure rate increases by more than an order of magnitude.

Miniaturization Tradeoffs

Manufacturing techniques and material technologies have pushed the envelope of achievable capacitance density further, yielding incredibly compact circuits at very attractive price points. This trend will undoubtedly continue, and in most cases, with little overhead to the design cycle. However, in specific applications, aggressive miniaturization is accompanied by nuanced performance tradeoffs that can greatly hinder a product’s success. Increased voltage dependence, temperature sensitivity, and electrical strength are a few discussed above. If the designer is not at least aware of what these tradeoffs are and when they matter, the downstream effects of poor manufacturing yield, field failures, and warranty returns can quickly overtake the potential success of any product.

pdf version of the paper is available from AVX website link below

Related

Source: AVX

Recent Posts

High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

12.8.2025
38

KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

8.8.2025
8

Radiation Tolerance of Tantalum and Ceramic Capacitors

8.8.2025
60

TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

7.8.2025
31

Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

6.8.2025
34

Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

6.8.2025
46

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

6.8.2025
39

How to Calculate the Output Capacitor for a Switching Power Supply

6.8.2025
40

Additive Manufacturing of Mn-Zn Ferrite Planar Inductors

4.8.2025
21

Evaluation and Modeling of Supercapacitors for Reliability of Lifetime Predictions

4.8.2025
31

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version