Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Releases 140C Compact Vibration Robust Automotive Aluminum Capacitors

    DigiKey Presents Factory Tomorrow Season 5 Video Series

    Samsung MLCCs Lineup for In-Vehicle Infotainment

    source: Samtec

    Best Practices for Cable Management in High-Speed and High-Density Systems

    Würth Elektronik Unveils Compact Common-Mode Data Lines Chokes

    Bourns Releases TCO 240 Watt USB Mini-Breaker

    Littelfuse Adds 600W Automotive TVS Diodes for High-Energy Transient Protection

    Vishay Releases Harsh Environment Robust DC-Link Film Capacitor

    Bourns Releases Automotive High Creepage and Clearance Transformer

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Releases 140C Compact Vibration Robust Automotive Aluminum Capacitors

    DigiKey Presents Factory Tomorrow Season 5 Video Series

    Samsung MLCCs Lineup for In-Vehicle Infotainment

    source: Samtec

    Best Practices for Cable Management in High-Speed and High-Density Systems

    Würth Elektronik Unveils Compact Common-Mode Data Lines Chokes

    Bourns Releases TCO 240 Watt USB Mini-Breaker

    Littelfuse Adds 600W Automotive TVS Diodes for High-Energy Transient Protection

    Vishay Releases Harsh Environment Robust DC-Link Film Capacitor

    Bourns Releases Automotive High Creepage and Clearance Transformer

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Pros and Cons of MLCC Downsizing; AVX Tech Paper

20.1.2021
Reading Time: 4 mins read
A A

Advantages and disadvantages of MLCC downsizing is discussed in AVX technical papers written by Frank Hodgkinson and Maureen Strawhorne.

Abstract:

As integrated circuits (ICs) continue to pack more functionality into smaller packages, the need for bulk off-chip capacitance remains. In resonant circuits, such as phase-lock-loops (PLLs) and switching regulators, precision class one ceramic capacitor may be required.

RelatedPosts

The Tantalum Supply Chain: 2021 Global Market Update

KEMET Design it Day: Capacitors and Inductors Selection Guide for Decoupling And Filtering

Tantalum Capacitors Explained; Kemet Webinar

Such capacitors must maintain a tight capacitance range over process, voltage, and temperature variation (PVT) for the host IC to meet its performance specifications. In contrast, class two ceramic capacitors are required for nearly every IC in the form of decoupling and bypass capacitance. They may also be found in amplifier circuits, simple filters, and linear regulators where their function is less dependent on tightly specified impedance requirements.

Such requirements for class two capacitors often create a trap for the unwitting designer, who might naturally focus on voltage rating, size, and cost when choosing these devices. This is especially true when the top-level application is overly constrained by form factor. One can imagine the selection filtering process: start with an approximate capacitor value (i.e., 100 nF), choose a voltage rating with some reasonable headroom (i.e., 6.3 V), and finally, find the smallest surface mount (SMT) package (i.e., 0402) and cost combination to create room for other components and PCB routing.

Considering voltage rating and capacitance separately from package size may seem reasonable, but therein lies the potential trap. As capacitor sizes have grown smaller and smaller, manufacturers have developed new technologies to increase capacitance density to achieve standard value-package combinations. In doing so, dependencies have also been introduced that may create unexpected surprises during testing.

Tradeoffs in Capacitance Density

High permittivity is mainly a function of dielectric choice. Typical ceramic materials, titanium dioxide, for example, exhibit relative permittivity values in the tens. Ferroelectric materials, on the other hand, can achieve relative permittivities in the thousands. Most modern MLCCs are constructed using Barium Titanate (BaTiO3), which can yield relative permittivity values up to 7,000. In fact, much of the capacitor manufacturing expertise lies in the milling, casting, and sintering of this insulator.

Materials research and optimization will undoubtedly continue to provide enhanced dielectric properties in the future. Still, the primary knobs for maximizing capacitance density are the number of layers and the layer spacing. In the mid-1990s, minimum layer thicknesses were in the 5-micron range, and common capacitor values were built from several hundred layers. Nearly two decades later, the thickness of the minimum layer was reduced by a factor of ten, and capacitors with more than one thousand layers were not unusual. This miniaturization trend comes with significant tradeoffs that must be considered when selecting MLCCs during the design cycle.

As layer thicknesses are reduced, the electric field strength through the dielectric is increased for the same applied voltage. Since the dielectric materials are typically ferroelectric, their permittivity reduces as electric field strength increases. Therefore, the same capacitor in a 0402 package will have poorer voltage dependence characteristics compared to a 0805 package. At high voltages, this can be particularly problematic. An example is shown below, where a 0402 capacitor has lost 90% of its capacitance capability at an applied voltage of 50V.

Capacitance Change with DC Voltage for 0.1uF 0402 to 1210

Similar trends are seen when looking at the temperature performance of size reduced MLCC’s. The figure below demonstrates how for the same capacitance, a 0603 package loses nearly double the effective capacitance compared to an 1812 package at high temperatures.

Temperature Characteristic for 1uF 25v X7R: 0603 to 1812 styles

The story doesn’t end there. Miniaturization of capacitors has a deleterious effect on numerous other performance parameters, including ripple current handling capability, ESD protection, and electrical strength. Many of these weaknesses are particularly noticeable in high voltage and high power applications. Of greater concern than the performance tradeoffs is the potential for failure over time, especially in safety-critical systems.

The following figure depicts the failure rate of a typical one microfarad capacitor compared to its dielectric thickness, which is directly correlated to package size. As the size moves from 1812 to 0603, the failure rate increases by more than an order of magnitude.

Miniaturization Tradeoffs

Manufacturing techniques and material technologies have pushed the envelope of achievable capacitance density further, yielding incredibly compact circuits at very attractive price points. This trend will undoubtedly continue, and in most cases, with little overhead to the design cycle. However, in specific applications, aggressive miniaturization is accompanied by nuanced performance tradeoffs that can greatly hinder a product’s success. Increased voltage dependence, temperature sensitivity, and electrical strength are a few discussed above. If the designer is not at least aware of what these tradeoffs are and when they matter, the downstream effects of poor manufacturing yield, field failures, and warranty returns can quickly overtake the potential success of any product.

pdf version of the paper is available from AVX website link below

Related

Source: AVX

Recent Posts

TDK Releases 140C Compact Vibration Robust Automotive Aluminum Capacitors

5.9.2025
4

Samsung MLCCs Lineup for In-Vehicle Infotainment

4.9.2025
14
source: Samtec

Best Practices for Cable Management in High-Speed and High-Density Systems

4.9.2025
8

Würth Elektronik Unveils Compact Common-Mode Data Lines Chokes

3.9.2025
18

Vishay Releases Harsh Environment Robust DC-Link Film Capacitor

2.9.2025
30

Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

29.8.2025
34

Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

28.8.2025
13

Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

28.8.2025
32

Ripple Steering in Coupled Inductors: SEPIC Case

27.8.2025
20

Samsung Releases Ultra–High-Capacitance 4.7uF 2.5V MLCC in 0201 for AI GPU

27.8.2025
42

Upcoming Events

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version