Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    July 2025 ECST Components Survey Continue with Strong Sales Sentiment

    SCHURTER Releases Chip Fuse for ATEX and Precision Applications

    SCHURTER Introduces Reliable Arc-Free Switching Technology

    Additive Manufacturing of Mn-Zn Ferrite Planar Inductors

    Evaluation and Modeling of Supercapacitors for Reliability of Lifetime Predictions

    Hirose Releases High Current Vibration-Resistant Connectors

    Researchers Presents High-Performance Carbon-Based Supercapacitors

    Hirose Launches World’s Lowest Profile and Narrowest Pitch FPC Connector

    Modelithics Announces v25.5 of the COMPLETE+3D Library for Ansys HFSS

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    July 2025 ECST Components Survey Continue with Strong Sales Sentiment

    SCHURTER Releases Chip Fuse for ATEX and Precision Applications

    SCHURTER Introduces Reliable Arc-Free Switching Technology

    Additive Manufacturing of Mn-Zn Ferrite Planar Inductors

    Evaluation and Modeling of Supercapacitors for Reliability of Lifetime Predictions

    Hirose Releases High Current Vibration-Resistant Connectors

    Researchers Presents High-Performance Carbon-Based Supercapacitors

    Hirose Launches World’s Lowest Profile and Narrowest Pitch FPC Connector

    Modelithics Announces v25.5 of the COMPLETE+3D Library for Ansys HFSS

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Pulse Transformers are the Key to More Reliable Wired LANs

7.9.2018
Reading Time: 4 mins read
A A

Source: Design News article

Joe Pulomena, director of  product marketing magnetics at EPCOS Inc., A TDK Group Company, explained benefits of often forgotten wired LANs benefits and pulse transformers benefits to its reliability in his Electronics & Test Automation article.

RelatedPosts

July 2025 ECST Components Survey Continue with Strong Sales Sentiment

SCHURTER Releases Chip Fuse for ATEX and Precision Applications

SCHURTER Introduces Reliable Arc-Free Switching Technology

Over the past decade, innovations in technology have helped wireless connections become more prevalent and more reliable, allowing for shared connections across devices and across greater distances. Wireless definitely has its place. However, wired LANs have many benefits that are critical to the design of most networks. They include speed, less electromagnetic interference (EMI), better security, more stability, and greater reliability. With new technological advances, the advantages of wired LANs are exponentially increasing.

 

1. Pictured is a LAN interface structure (100BASE-TX) with two pulse transformers and two common-mode chokes. (Image source: Product Marketing Magnetics, EPCOS Inc., A TDK Group Co.)

We often associate wireless with the Internet of Things (IoT), but it is also powered by wired LANs. For example, as more  servers, PCs, laptops, smart TVs, audio/visual devices, wireless access points, and other digital devices increase within a network, ensuring that a quality wired LAN is as close to the devices as possible will help safeguard the success of the network. Simply put, they rely on wired LAN connectivity to work well.

As a result, the number of servers and routers that serve ever more LAN ports will continue to grow—as will the multitude of consumer devices, such as notebook PCs, digital TVs, and other audiovisual devices, that will profit from the benefits of wired LAN connectivity.

The Key to Reliable Wired LANs

In order for wired LANs to work, pulse transformers send rectangular pulse transmissions. Pulse transformers are just like any other transformer; they contain both primary and secondary windings within a single core. The galvanic separation helps to protect sensitive ICs and networked devices within the network from DC bias. In addition, these cores prevent pulse waveform distortions across a wide frequency range. They also have low losses that transmit pulse waves, having many different frequencies resulting from the Fast Fourier Transform.

Newer LAN pulse transformers, which have been developed over the past several years, use high-performance ferrite materials within the core. In addition to improving performance, this helps the transformers have a longer operational lifespan.

2. A new type of common-mode choke is manufactured using advanced materials and auto-winding processes. This produces pulse transformer modules that are small enough to be integrated in standard RJ-45 LAN connectors. (Image source: Product Marketing Magnetics, EPCOS Inc., A TDK Group Co.)

 

LAN pulse transformers are typically used alongside a common-mode choke to form a pulse transformer module, which limits common mode noise entering or exiting the system. A pulse transformer module is often embedded within the RJ-45 connector to form a connector module. As a result, LAN pulse transformers must be extremely compact to be used in standard RJ-45 connectors (see figure 1).

Extremely Reliable Performance 

The demand for SMD LAN pulse transformers has increased significantly over the past several years, particularly as more devices become connected. However, traditional, manual production methods have been the norm. In order to speed manufacturing and improve the performance, quality, and miniaturization of pulse transformers, new manufacturing methods and pulse transformer designs needed to evolve.

To improve performance, pulse transformer modules utilize ring cores in both the common-mode choke and the transformer. Ring cores have a lower leakage flux due to their design, which minimizes air gaps that are normal characteristics of other core shapes. In addition, ring cores can be manufactured using an auto-winding process, preventing unevenness across the manufacturing process and within production batches—even for compact SMD designs.

These new manufacturing processes have helped to create entirely new types of SMD common-mode filters and LAN pulse transformers. Engineers found that using a coil carrier in SMD common-mode chokes—with a rectangular profile (DR core) that is automatically wound and bonded to an SP ferrite core or plate—would create the functional equivalent of a ring core. In order to accomplish this design, a special Ni-Zn ferrite material is used within these cores to create high magnetic permeability and saturation flux density throughout the temperature ranges that are typically found in LAN environments.

In addition, these types of SMD common-mode filters and LAN pulse transformers employ automated thermo-compression bonding for the connector electrodes and wires. In doing so, they provide higher quality components with uniform characteristics, a smaller footprint, and an overall lower cost of manufacturing.

While automating production, this advance in the manufacturing process improves the quality and stability of the core. It also enables pulse transformer modules to be miniaturized and made small enough to be integrated in standard RJ-45 LAN connectors in package size 3232 (as small as 3.2 mm × 3.2 mm × 2.9 mm). Using these techniques and manufacturing processes can reduce most 100BASE-TX pulse transformer modules by as much as 30 percent with a footprint that uses as little as 50 percent of the space as traditional LAN pulse transformers (see figure 2).

With these innovative manufacturing processes, pulse transformers may exhibit very low insertion loss of 1.5 dB or below over the range of 0.1 MHz to 100 MHz. And, with the advances in miniaturization, they may not exceed 2.5 dB over the same range (see figure 3).

3. Shown is the insertion loss of an SMD pulse transformer that is operating below 1 dB over a very broad frequency range. (Image source: Product Marketing Magnetics, EPCOS Inc., A TDK Group Co.)

 

Final Thoughts

New, low profile SMD pulse transformers and common-mode chokes offer all the paybacks of fully automated manufacturing processes—including uniformity, reliability, and miniaturization—for a wide range of temperature conditions. New materials, evaluation and simulation, and device and module technology will ensure the high quality, high performance of these devices. Such performance and reliability are crucial as more and more LAN ports are added to servers, routers, notebooks, TVs, and other connected equipment, including many applications in the automotive market. I’m excited to see what additional advances will be developed over the next several years, which will become an integral part of tomorrow’s high-speed, next-generation networks.

 

Related

Recent Posts

Additive Manufacturing of Mn-Zn Ferrite Planar Inductors

4.8.2025
3

Evaluation and Modeling of Supercapacitors for Reliability of Lifetime Predictions

4.8.2025
7

PCNS 2025 Final Program Announced!

4.8.2025
48

YAGEO Offers High-Performance Diplexers for Dual-Band Wi-Fi 6E/7Integration

30.7.2025
5

TDK Announced Wide Frequency Automotive Wirewound POC Inductors

30.7.2025
32

Bourns Announced Shielded Power Inductor with High Saturation and Low Radiation

30.7.2025
18

Würth Elektronik Expands MagI³C with Variable Step-Down Modules

30.7.2025
19

KYOCERA AVX Releases 600MHz Band71 Compact SAW Duplexer

30.7.2025
8

Switched Capacitor Converter Explained

28.7.2025
31

Researchers Demonstrated 200C Polymer Film Dielectric

28.7.2025
16

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version