Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Extends Rotational Life Option for its Guitar Potentiometer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

    Fischer Releases High Vibration Robust Ratchet Locking USB-C Connector System

    Littelfuse Unveils High-Use Tactile Switches with 2 Million Cycle Lifespan

    KYOCERA AVX Releases Compact High-Directivity Couplers

    Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    Wk 18 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Improving Common Mode Noise Reduction while Decreasing BOM

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Extends Rotational Life Option for its Guitar Potentiometer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

    Fischer Releases High Vibration Robust Ratchet Locking USB-C Connector System

    Littelfuse Unveils High-Use Tactile Switches with 2 Million Cycle Lifespan

    KYOCERA AVX Releases Compact High-Directivity Couplers

    Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    Wk 18 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Improving Common Mode Noise Reduction while Decreasing BOM

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Quantum Electronics Breakthrough: One Square Inch Spin Capacitor Could Store 100 Terabytes of Data

25.3.2020
Reading Time: 5 mins read
A A

Scientists have made a breakthrough in the development of a new generation of electronics that will require less power and generate less heat. It involves exploiting the complex quantum properties of electrons – in this case, the spin state of electrons. 

“This is an exciting breakthrough. The application of quantum physics to electronics will result in new and novel devices.”

Dr Matthew Rogers, University of Leeds

In a world first, the researchers – led by a team of physicists from the University of Leeds – have announced in the journal Science Advances that they have created a ‘spin capacitor’ that is able to generate and hold the spin state of electrons for a number of hours. 

RelatedPosts

Bourns Extends Rotational Life Option for its Guitar Potentiometer

Modeling and Simulation of Leakage Inductance

Power Inductor Considerations for AI High Power Computing – Vishay Video

Previous attempts have only ever held the spin state for a fraction of a second.

In electronics, a capacitor holds energy in the form of electric charge. A spin capacitor is a variation on that idea: instead of holding just charge, it also stores the spin state of a group of electrons – in effect it ‘freezes’ the spin position of each of the electrons.

High capacity data storage 

That ability to capture the spin state opens up the possibility that new devices could be developed that store information so efficiently that storage devices could get very small. A spin capacitor measuring just one square inch could store 100 Terabytes of data. 

Dr Oscar Cespedes, Associate Professor in the School of Physics and Astronomy who supervised the research, said: “This is a small but significant breakthrough in what could become a revolution in electronics driven by exploitation of the principles of quantum technology.

“At the moment, up to 70 per cent of the energy used in an electronic device such as a computer or mobile phone is lost as heat, and that is the energy that comes from electrons moving through the device’s circuitry. It results in huge inefficiencies and limits the capabilities and sustainability of current technologies.

“The carbon footprint of the internet is already similar to that of air travel and increases year on year.

“With quantum effects that use light and eco-friendly elements, there could be no heat loss. It means the performance of current technologies can continue to develop in a more efficient and sustainable way that requires much less power.”

Dr Matthew Rogers, one of the lead authors, also from the School of Physics and Astronomy at Leeds, commented: “Our research shows that the devices of the future may not have to rely on magnetic hard disks. Instead. They will have spin capacitors that are operated by light, which would make them very fast, or by an electrical field, which would make they extremely energy efficient.

“This is an exciting breakthrough. The application of quantum physics to electronics will result in new and novel devices.”

How a spin capacitor works

In conventional computing, information is coded and stored as a series of bits: for example, zeroes and ones on a hard disk. Those zeroes and ones can be represented or stored on the hard disc by changes in the polarity of tiny magnetized regions on the disc.

With quantum technology, spin capacitors could write and read information coded into the spin state of electrons by using light or electric fields.

The research team were able to develop the spin capacitor by using an advanced materials interface made of a form of carbon called buckminsterfullerene (buckyballs), manganese oxide and a cobalt magnetic electrode. The interface between the nanocarbon and the oxide is able to trap the spin state of electrons. 

The time it takes for the spin state to decay has been extended by using the interaction between the carbon atoms in the buckyballs and the metal oxide in the presence of a magnetic electrode.  

Some of ther world’s most advanced experimental facilities were used as part of the investigation.

The researchers used the ALBA Synchrotron in Barcelona which uses electron accelerators to produce synchrotron light that allows scientists to visualise the atomic structure of matter and to investigate its properties.

Low energy muon spin spectroscopy at the Paul Scherrer Insitute in Switzerland was used to monitor local spin changes under light and electrical irradiation within billionths of a meter inside the sample. A muon is a sub-atomic particle.

The results of the experimental analysis were interpreted with the assistance of computer scientists at the UK’s Science and Technical Facilities Council, home to one of the UK’s most powerful supercomputers.   

The scientists believe the advances they have made can be built on, most notably towards devices that are able to hold spin state for longer periods of time. 

Further information: 

The top image shows a sample of the advanced material undergoing analysis by muon spectroscopy. A muon is a sub-atomic particle. 

The paper, Reversible spin storage in metal oxide—fullerene heterojunctions, was published on 20 March 2020.   

Related

Source: University of Leeds

Recent Posts

Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

6.5.2025
41

Murata and NIMS Built New Database of Dielectric Material Properties

5.5.2025
49

Tariffs Crush Sales Sentiment in April 2025 ECST Results

5.5.2025
65

Solid State Polymer Multilayer Capacitors For High Temperature Application

2.5.2025
36

Graphene-Based BOSC Bank Of Supercapacitor Cells

2.5.2025
13

Hybrid Energy Storage System for Nanosatellite Applications

1.5.2025
9

COTS-Plus Bulk Tantalum Capacitor for LEO Flight Platforms

29.4.2025
38

High Energy Density Supercapacitors for Space Applications

28.4.2025
36

Layer-By-Layer Printed Film Dielectrics For Energy Efficient Space Systems

28.4.2025
13

Stress Testing Evaluation of Chip Aluminum Polymer Capacitors for Space Applications

27.4.2025
48

Upcoming Events

May 14
11:00 - 12:00 CEST

Reliable RIGID.flex PCBs for Critical Applications – Made in Europe

May 14
17:00 - 17:30 CEST

Calculating Foil Winding Losses with AI

May 28
16:00 - 17:00 CEST

Power Over Data Line

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • NTC/PTC Thermistors LTSpice Simulation; Vishay Video Part I

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dielectric Constant and its Effects on the Properties of a Capacitor

    7 shares
    Share 7 Tweet 0
  • RLC Circuit Switching Response Explained

    0 shares
    Share 0 Tweet 0
  • Transformer Optimal Operating Frequency for Phase-Shifted Full-Bridge Converter

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version