Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Combines Varistor and Gas Discharge Tube into One Component

    Vishay Extends Automotive TO-220 Thick Film Power Resistors with 30W Option

    Transient Suppression Guide

    Rubycon Releases High Capacitance Radial Lead Aluminum Electrolytic Capacitors

    October 2025 ECIA US Components Sales Sentiment Remains Strong but Weakens in November

    Wk 46 Electronics Supply Chain Digest

    Overvoltage and Transient Protection for DC/DC Power Modules

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Combines Varistor and Gas Discharge Tube into One Component

    Vishay Extends Automotive TO-220 Thick Film Power Resistors with 30W Option

    Transient Suppression Guide

    Rubycon Releases High Capacitance Radial Lead Aluminum Electrolytic Capacitors

    October 2025 ECIA US Components Sales Sentiment Remains Strong but Weakens in November

    Wk 46 Electronics Supply Chain Digest

    Overvoltage and Transient Protection for DC/DC Power Modules

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Reducing Cost of Producing Supercapacitors

22.8.2016
Reading Time: 3 mins read
A A

source: ScienceDaily article

Thu, 08/18/2016 – 1:55pm by South Dakota State University
The ability to absorb and discharge energy quickly make supercapacitors an integral part of energy harvesting systems, such as the regenerative braking systems of hybrid vehicles, according to explainthatstuff.com. However, supercapacitors are expensive.

RelatedPosts

TDK Combines Varistor and Gas Discharge Tube into One Component

Vishay Extends Automotive TO-220 Thick Film Power Resistors with 30W Option

Transient Suppression Guide

About half the materials cost comes from the use of activated carbon to coat the electrodes, according to Materials Today. Supercapacitor-grade activated carbon can cost $15 per kilogram.

Two South Dakota State University engineering researchers are using biochar, an inexpensive carbon-rich material and a new method of creating the porous surface needed to capture electricity to reduce the cost of supercapacitors.

Associate professor Qi Hua Fan of electrical engineering and computer Science uses plasma etching to active the biochar. Associate professor Zhengrong Gu of agricultural and biosystems engineering uses the activated biochar to make supercapacitors. Biochar is a byproduct of the pyrolysis process that turns plant materials into biofuel.

Activating biochar

“Raw biochar needs activation to create the porous structure needed to trap ions,” explained Fan. Traditional chemical activation requires a high temperature, in the range of 1,700 Fahrenheit for two hours, and a chemical catalyst, followed by chemical washing and prolonged drying. This makes it an energy-intensive, time-consuming process.

The charcoal-like biochar can be made from crop residue, such as corn stover, wood or even dried distillers grain with solubles, known as DDGS. However, for this research, Fan used commercially available biochar made from yellow pine.

Several research groups had analyzed the specific capacitance and performance of this type of biochar, he explained, “so we had a baseline.” In addition, a company could supply the quantities of biochar necessary to make sure that test results were repeatable.

To do the plasma etching, oxygen was used and excited by radio frequency through a dielectric barrier discharge. Fan then gave the activated biochar to Gu, who made the supercapacitors. The research was supported by a five-month, proof-of-concept grant from the North Central Regional Sun Grant Center. Two graduate students worked on the project.

Increasing capacitance, improving efficiency

When the researchers compared capacitor performance, they found that those made using plasma treatment had 1.7 times higher specific capacitance, 171.4 Farads, compared to 99.5 Farads using chemical activation. “That’s a big improvement,” Fan pointed out.

The process took only five minutes with no external heating or chemicals needed. “It is very fast and consumes very little energy,” he noted. “The energy required to activate biochar is equivalent to what we use for a light bulb.”

In a paper published in the Journal of Power Sources, Fan, Gu and assistant physics professor Parashu Kharel explain, “oxygen plasma was capable of creating various pore sizes that would allow easy access for the electrolyte ions to the porous surface, leading to a higher capacitance than the chemically activated biochar.”

In addition, oxygen plasma-activated capacitors had lower estimated resistance, 3.3 ohms, as opposed to 14.5 ohms for chemically treated capacitors. This was attributed to the ions having easier access to the micropores and mesopores created by plasma processing.

And, Fan added, “Yellow pine is not the best biochar for supercapacitors.” He expects a similar improvement in performance using biochar derived from other types of biomass.

However, he pointed out, the process must be optimized for each type of structure. “Activation depends on what kind of plasma, what conditions are used and how long we treat the material.”

Fan has filed a patent application for the plasma activation process he developed. The next step will be to apply for funding to expand this promising processing technique for other types of biochar.

“No matter what kind of parameters we eventually end up with, this will be very efficient,” he added.

Related

Recent Posts

Rubycon Releases High Capacitance Radial Lead Aluminum Electrolytic Capacitors

18.11.2025
22

October 2025 ECIA US Components Sales Sentiment Remains Strong but Weakens in November

18.11.2025
24

Choosing the Right Capacitor: The Importance of Accurate Measurements

12.11.2025
60

Skeleton Opens SuperBattery Factory in Finland 

12.11.2025
25

ESR of Capacitors, Measurements and Applications

7.11.2025
134

3-Phase EMI Filter Design, Simulation, Calculation and Test

6.11.2025
107

Smoltek CNF-MIM Capacitors Pass 1,000h Reliability Test

6.11.2025
14

Capacitor Lead Times: October 2025

6.11.2025
142

Paumanok Unveils Aluminum Capacitor Foils World Markets Study 2025-2030

6.11.2025
20

Upcoming Events

Dec 2
December 2 @ 12:00 - December 4 @ 14:15 CET

Microwave Packaging Technology

Dec 9
December 9 @ 12:00 - December 11 @ 14:15 EST

Space and Military Standards for Hybrids and RF Microwave Modules

Dec 10
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version