• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Reliability and MTBF: We think we know what we mean, but do we?

10.6.2016

Flex Suppressor Explained and its Applications

24.3.2023

Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

23.3.2023

Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

23.3.2023

Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

21.3.2023

SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

20.3.2023

Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

20.3.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Flex Suppressor Explained and its Applications

    Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

    Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

    Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

    Flying Capacitors Explained

    TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

    ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Flex Suppressor Explained and its Applications

    Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

    Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

    Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

    Flying Capacitors Explained

    TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

    ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Reliability and MTBF: We think we know what we mean, but do we?

10.6.2016
Reading Time: 4 mins read
0 0
0
SHARES
1.1k
VIEWS

source: EDN article

Jeff Smoot, VP of Application Engineering at CUI -June 08, 2016
You know how it is … you learned all this detail about electronics back in college and yes, you understood it then, but unless you’re using it day in and day out, that knowledge can fade and casual usage can erode the real meaning.

RelatedPosts

Flex Suppressor Explained and its Applications

Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

 

The classic example I keep coming across is the confusion between accuracy and resolution. Although not wishing to get into a lengthy explanation here, put simply, resolution is how finely we can divide a measurement, which could be the divisions on a ruler or the number of decimal places we use to express a result, whereas accuracy is how close that reading is to the true value.

Appreciating this distinction is important  – after all, while it may be of interest to observe the display on the fuel pump when filling your car, what matters at the end of the day is that the price you pay is for the true volume that has been dispensed. Terms like ‘reliability’ and ‘MTBF’ (mean time between failures) are similarly discussed with casual disregard to what is really meant. The trap many people fall into is wrongly assuming that the MTBF figure equates to the expected life of a product.

So, with that cautionary note in mind, I felt a brief refresher about the basics of reliability would seem to be in order. This will inevitably entail some back-to-basics theory but I’ll attempt to keep it as easy to follow as possible – for anyone wanting to delve deeper there are plenty of online resources although naturally I’m going to recommend an application note that can be found on CUI.com.

The word ‘reliable’ is used in many spheres of life and synonyms include dependable, trustworthy and unfailing. These words can be used about people or things but when applied to things, especially manufactured products, there is a slight mind-shift as we think more in terms of ‘how reliable’ something is or for how long we can reasonably expect to depend on it. This leads us to a quite simple definition, which is that:

Reliability is the probability that an individual unit of a product, operating under specified conditions, will work correctly for a specified period of time.

This naturally leads us to thinking about when the product stops working, i.e., when it fails for whatever reason. Product failures can occur at any time but they are not totally random. This is why, if you measure the individual lifetime for a large enough sample of products, you will typically get the classic “bathtub” result when plotting failure rate against time. The reason for this is that products experience early life “infant mortality” and they also wear out as they age. These characteristics overlay the constant level of failures to produce the observed failure rate shown in the chart below.

Classic “bathtub” curve of observed failure rate over time

What we really want, though, is to get a better handle on how reliable our product ought to be. So, armed with our failure rate data, the intrinsic failure rate of the product is defined as the failure rate during the constant part of its life cycle. This we denote as λ, from which the expression for reliability, denoted R(t), over time t, is given as:

R(t) = e -λt

Taking the inverse of failure rate, 1/ λ , we also get the mean time to failure (MTTF) or the slightly less correct but more commonly used term MTBF (mean time between failures). Plotting reliability against MTTF, as shown in the second chart, then provides us with some interesting insights:

A product whose intrinsic failure rate is 1 in a million (i.e. 10 -6) failures per hour has, by definition, an MTBF of one million hours. However the probability of it lasting 1 million hours (i.e. x=1 on the graph) is just 36.7%, which pretty much scotches any false assumption that MTBF equates to expected life. Indeed, further inspection of the graph shows that the probability of surviving more than 500,000 hours is only just over 60%, while a more respectable 90% reliability figure only equates to 100,000 hours.

All this serves to emphasize the importance of treating data such as MTBF with caution. Also, for most real products, it is important to understand where this data actually comes from. The bathtub curve discussion above assumes data collected from a large sample of products over a long time but this isn’t generally a practical approach. Instead calculating the failure rate for an end product depends on predictions that are based on one of a number of standardized component databases, which in turn have derived data using various sources including laboratory tests, burn-in results and field tests.

It should also be appreciated that for any product built from multiple components, such as a power supply, the failure rates for all these components must be summed together, resulting in an overall lower MTBF. This also reveals that the overall reliability of a system can be no better than its least reliable component, and while this may seem a fairly obvious conclusion, it also certainly suggests that a designer should pay most attention to improving the reliability of the weakest components.

Returning to my opening scenario of filling your car with fuel, recognizing the importance of accuracy when paying for something by volume, weight or whatever, is like realizing that that figures for a product’s reliability or MTBF don’t guarantee life expectancy any more than the result of a medical checkup. Instead these figures are perhaps more useful in providing a consistent approach for comparing products, either within a vendor’s range or from one vendor to the next.

Related Posts

Other

Electronic devices that can degrade and physically disappear on demand

4.9.2017
27
Other

‘Conflict minerals’ entering tech supply chains from countries beyond Africa

7.4.2017
113
Other

Critical Resistance Value The Relationship Between Working Voltage and Power

7.6.2016
996

Upcoming Events

Mar 29
15:00 - 16:00 EEST

Supercapacitors vs. Batteries in Engine Starting

Mar 29
17:00 - 18:00 CEST

Practical LLC Transformer Design Methodology

Apr 3
April 3 @ 12:00 - April 4 @ 14:00 CEST

Microelectronic Packaging Failure Modes and Analysis

View Calendar

Popular Posts

  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • Capacitor Losses (ESR, IMP, DF, Q), Series or Parallel Eq. Circuit ?

    0 shares
    Share 0 Tweet 0
  • Non-Linear Resistors: Thermistors, Varistors, Memristors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

PCNS Call for Papers !

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.