Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Common Mistakes in Flyback Transformer Specs

    Vishay Releases Miniature SMD Trimmers for Harsh Environments

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Stackpole Extends Voltage of High Temp Chip Resistors

    High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

    Bourns Releases High Power High Ripple Chokes

    KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Common Mistakes in Flyback Transformer Specs

    Vishay Releases Miniature SMD Trimmers for Harsh Environments

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Stackpole Extends Voltage of High Temp Chip Resistors

    High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

    Bourns Releases High Power High Ripple Chokes

    KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Researchers Demonstrated High Energy Storage, High Strength Multilayer Ferroelectric Dielectric Material

1.5.2024
Reading Time: 3 mins read
A A
Design of multilayer capacitor according to design rules for optimizing the breakdown field and energy storage capacity in the BZT/BST multilayer system. Source: University of Twente

Design of multilayer capacitor according to design rules for optimizing the breakdown field and energy storage capacity in the BZT/BST multilayer system. Source: University of Twente

Researchers at the University of Twente proposed multilayer dielectric material that shows excellent energy storage properties and outperforms any other lead-free thin film multilayer ferroelectric high energy storage capacitor. The study was published in journal Advanced Materials.

Researcher Minh Duc Nguyen and his colleagues worked on a new capacitor design strategy based on BST/BZT ceramic dielectric materials to improve their energy storage, decrease the amount of energy lost every time it is charged or discharged, and increase the number of times they can reliably charge and discharge.

RelatedPosts

Common Mistakes in Flyback Transformer Specs

Vishay Releases Miniature SMD Trimmers for Harsh Environments

Würth Elektronik Releases Push-Button and Main Switches

Pacemakers, defibrillators, radar technology and electric vehicles all need such kind of capacitors that can store and release a lot of energy in a matter of a few microseconds.

Nguyen and his team work on a type of capacitor that uses multiple thin layers of different materials. By adding layers they were able to increase the efficiency to over 90%. This means it loses less than 10% of the electric charge used for charging. That is two times less energy loss compared to the usual designs. It functions in a wide temperature range of 25–200 °C and can charge and discharge up to 10 billion times. Enough to do it once every second for over 300 years.

The researchers deduced design optimisation rules for the combination of materials they used. “These rules are expected also to be useful for optimizing other multilayer systems and are therefore very relevant for further increasing the energy storage density of capacitors”, they write in their publication. This paves the way for even better capacitors.

More information: –Minh D. Nguyen et al, Toward Design Rules for Multilayer Ferroelectric Energy Storage Capacitors – A Study Based on Lead‐Free and Relaxor‐Ferroelectric/Paraelectric Multilayer Devices, Advanced Materials (2024). DOI: 10.1002/adma.202402070

Abstract

Future pulsed-power electronic systems based on dielectric capacitors require the use of environment-friendly materials with high energy-storage performance that can operate efficiently and reliably in harsh environments. Here, a study of multilayer structures, combining paraelectric-like Ba0.6Sr0.4TiO3 (BST) with relaxor-ferroelectric BaZr0.4Ti0.6O3 (BZT) layers on SrTiO3-buffered Si substrates, with the goal to optimize the high energy-storage performance is presented.

The energy-storage properties of various stackings are investigated and an extremely large maximum recoverable energy storage density of ≈165.6 J cm−3 (energy efficiency ≈ 93%) is achieved for unipolar charging–discharging of a 25-nm-BZT/20-nm-BST/910-nm-BZT/20-nm-BST/25-nm-BZT multilayer structure, due to the extremely large breakdown field of 7.5 MV cm−1 and the lack of polarization saturation at high fields in this device. Strong indications are found that the breakdown field of the devices is determined by the outer layers of the multilayer stack and can be increased by improving the quality of these layers. Authors are also able to deduce design optimization rules for this material combination, which can be to a large extend justify by structural analysis. These rules are expected also to be useful for optimizing other multilayer systems and are therefore very relevant for further increasing the energy storage density of capacitors.

Related

Source: University of Twente

Recent Posts

Common Mistakes in Flyback Transformer Specs

15.8.2025
4

High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

12.8.2025
48

Radiation Tolerance of Tantalum and Ceramic Capacitors

8.8.2025
60

TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

7.8.2025
31

Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

6.8.2025
34

Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

6.8.2025
47

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

6.8.2025
40

How to Calculate the Output Capacitor for a Switching Power Supply

6.8.2025
42

Additive Manufacturing of Mn-Zn Ferrite Planar Inductors

4.8.2025
22

Evaluation and Modeling of Supercapacitors for Reliability of Lifetime Predictions

4.8.2025
32

Upcoming Events

Aug 27
17:00 - 18:00 CEST

Capacitor Assemblies for High-Power Circuit Designs

Sep 3
15:30 - 17:30 CEST

How to Choose Your Magnetic Supplier

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version