Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Researchers Demonstrated 32nm Aluminum Vacuum Gap Capacitor

    Conductive Polymer Capacitor Market and Design‑In Guide to 2035

    TDK Releases High Performance 105C DC Link Film Capacitors

    YAGEO Offers Automotive MOVs for EV and AI power

    YAGEO Acquires 100% of Shares of Shibaura Electronics

    Wk 3 Electronics Supply Chain Digest

    Vishay Extends Aluminum Capacitors Rating Up to 600 V for DC Links

    Würth Elektronik Introduces Product Navigator for Passive Components

    Panasonic Passive Components for Reliable Robotic Arms

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Researchers Demonstrated 32nm Aluminum Vacuum Gap Capacitor

    Conductive Polymer Capacitor Market and Design‑In Guide to 2035

    TDK Releases High Performance 105C DC Link Film Capacitors

    YAGEO Offers Automotive MOVs for EV and AI power

    YAGEO Acquires 100% of Shares of Shibaura Electronics

    Wk 3 Electronics Supply Chain Digest

    Vishay Extends Aluminum Capacitors Rating Up to 600 V for DC Links

    Würth Elektronik Introduces Product Navigator for Passive Components

    Panasonic Passive Components for Reliable Robotic Arms

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Researchers Demonstrated High Energy Storage, High Strength Multilayer Ferroelectric Dielectric Material

1.5.2024
Reading Time: 3 mins read
A A
Design of multilayer capacitor according to design rules for optimizing the breakdown field and energy storage capacity in the BZT/BST multilayer system. Source: University of Twente

Design of multilayer capacitor according to design rules for optimizing the breakdown field and energy storage capacity in the BZT/BST multilayer system. Source: University of Twente

Researchers at the University of Twente proposed multilayer dielectric material that shows excellent energy storage properties and outperforms any other lead-free thin film multilayer ferroelectric high energy storage capacitor. The study was published in journal Advanced Materials.

Researcher Minh Duc Nguyen and his colleagues worked on a new capacitor design strategy based on BST/BZT ceramic dielectric materials to improve their energy storage, decrease the amount of energy lost every time it is charged or discharged, and increase the number of times they can reliably charge and discharge.

RelatedPosts

Researchers Demonstrated 32nm Aluminum Vacuum Gap Capacitor

Conductive Polymer Capacitor Market and Design‑In Guide to 2035

TDK Releases High Performance 105C DC Link Film Capacitors

Pacemakers, defibrillators, radar technology and electric vehicles all need such kind of capacitors that can store and release a lot of energy in a matter of a few microseconds.

Nguyen and his team work on a type of capacitor that uses multiple thin layers of different materials. By adding layers they were able to increase the efficiency to over 90%. This means it loses less than 10% of the electric charge used for charging. That is two times less energy loss compared to the usual designs. It functions in a wide temperature range of 25–200 °C and can charge and discharge up to 10 billion times. Enough to do it once every second for over 300 years.

The researchers deduced design optimisation rules for the combination of materials they used. “These rules are expected also to be useful for optimizing other multilayer systems and are therefore very relevant for further increasing the energy storage density of capacitors”, they write in their publication. This paves the way for even better capacitors.

More information: –Minh D. Nguyen et al, Toward Design Rules for Multilayer Ferroelectric Energy Storage Capacitors – A Study Based on Lead‐Free and Relaxor‐Ferroelectric/Paraelectric Multilayer Devices, Advanced Materials (2024). DOI: 10.1002/adma.202402070

Abstract

Future pulsed-power electronic systems based on dielectric capacitors require the use of environment-friendly materials with high energy-storage performance that can operate efficiently and reliably in harsh environments. Here, a study of multilayer structures, combining paraelectric-like Ba0.6Sr0.4TiO3 (BST) with relaxor-ferroelectric BaZr0.4Ti0.6O3 (BZT) layers on SrTiO3-buffered Si substrates, with the goal to optimize the high energy-storage performance is presented.

The energy-storage properties of various stackings are investigated and an extremely large maximum recoverable energy storage density of ≈165.6 J cm−3 (energy efficiency ≈ 93%) is achieved for unipolar charging–discharging of a 25-nm-BZT/20-nm-BST/910-nm-BZT/20-nm-BST/25-nm-BZT multilayer structure, due to the extremely large breakdown field of 7.5 MV cm−1 and the lack of polarization saturation at high fields in this device. Strong indications are found that the breakdown field of the devices is determined by the outer layers of the multilayer stack and can be increased by improving the quality of these layers. Authors are also able to deduce design optimization rules for this material combination, which can be to a large extend justify by structural analysis. These rules are expected also to be useful for optimizing other multilayer systems and are therefore very relevant for further increasing the energy storage density of capacitors.

Related

Source: University of Twente

Recent Posts

Researchers Demonstrated 32nm Aluminum Vacuum Gap Capacitor

20.1.2026
16

Conductive Polymer Capacitor Market and Design‑In Guide to 2035

20.1.2026
41

TDK Releases High Performance 105C DC Link Film Capacitors

19.1.2026
35

Vishay Extends Aluminum Capacitors Rating Up to 600 V for DC Links

15.1.2026
31

Würth Elektronik Introduces Product Navigator for Passive Components

14.1.2026
68

Panasonic Passive Components for Reliable Robotic Arms

14.1.2026
78

DC/DC Push‑Pull Converter vs PSFB Design Guide

12.1.2026
80

Rubycon PMLCAP DC‑Link Film Capacitors in Mass Production

9.1.2026
83

YAGEO High‑Capacitance X7R Automotive MLCC Extensions

8.1.2026
69

Upcoming Events

Jan 21
18:00 - 18:45 CET

To Rogowski or not to Rogowski

Jan 27
16:00 - 17:00 CET

Simplifying Vehicle Development with Automotive Ethernet and Zonal Smart Switch Technologies

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How Metal Prices Are Driving Passive Component Price Hikes

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Degradation of Capacitors and its Failure Mechanisms

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version