Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samsung Releases Automotive Molded 2220 1kV C0G MLCC

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    VINATech Offers Smallest 100µF Al-Hybrid Capacitor

    Vishay Unveils SMD 1200V PTC Thermistors in Compact Size

    Power Inductors Future: Minimal Losses and Compact Designs

    Bourns Unveils Automotive 3 Watt Gate Driver Transformer

    Murata Opens EMC Test Lab in Nuremberg to Enhance Automotive Support

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Molex Acquires Smiths Interconnect

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samsung Releases Automotive Molded 2220 1kV C0G MLCC

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    VINATech Offers Smallest 100µF Al-Hybrid Capacitor

    Vishay Unveils SMD 1200V PTC Thermistors in Compact Size

    Power Inductors Future: Minimal Losses and Compact Designs

    Bourns Unveils Automotive 3 Watt Gate Driver Transformer

    Murata Opens EMC Test Lab in Nuremberg to Enhance Automotive Support

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Molex Acquires Smiths Interconnect

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Researchers Demonstrated Novel BTO Based Capacitor Heterostructures with 19x Higher Energy Density

23.4.2024
Reading Time: 4 mins read
A A
Artificial heterostructures made of freestanding 2D and 3D membranes developed by Sang-Hoon Bae’s lab have an energy density up to 19 times higher than commercially available capacitors. (Credit: Bae Lab)

Artificial heterostructures made of freestanding 2D and 3D membranes developed by Sang-Hoon Bae’s lab have an energy density up to 19 times higher than commercially available capacitors. (Credit: Bae Lab)

Sang-Hoon Bae, researcher at McKelvey School of Engineering at Washington University in St. Louis, USA developed BaTiO3(BTO) based heterostructures with material properties optimal for high-density energy storage capacitors with durable ultrafast charging.

Electrostatic capacitors play a crucial role in modern electronics. They enable ultrafast charging and discharging, providing energy storage and power for devices ranging from smartphones, laptops and routers to medical devices, automotive electronics and industrial equipment. However, the ferroelectric dielectric materials used in ceramic capacitors have significant energy loss due to their material properties, making it difficult to provide high energy storage capability. 

RelatedPosts

Samsung Releases Automotive Molded 2220 1kV C0G MLCC

How to Select Ferrite Bead for Filtering in Buck Boost Converter

VINATech Offers Smallest 100µF Al-Hybrid Capacitor

Sang-Hoon Bae, assistant professor of mechanical engineering & materials science in the McKelvey School of Engineering at Washington University in St. Louis, has addressed this long-standing challenge in deploying ferroelectric materials for energy storage applications.

In a study published April 18 in Science, Bae and his collaborators, introduce an approach to control the relaxation time using two-dimensional (2D) materials while minimizing energy loss by using 2D/3D/2D (Au/MoS2/BaTiO3/MoS2/Au) heterostructures and preserving the crystallinity of ferroelectric 3D materials. Using this approach, we were able to achieve an energy density of 191.7 joules per cubic centimeter with an efficiency greater than 90%. This precise control over relaxation time holds promise for a wide array of applications and has the potential to accelerate the development of highly efficient energy storage systems.

Working with Bae, doctoral student Justin S. Kim and postdoctoral researcher Sangmoon Han developed novel 2D/3D/2D heterostructures that can minimize energy loss while preserving the advantageous material properties of ferroelectric 3D materials. Their approach cleverly sandwiches 2D and 3D materials in atomically thin layers with carefully engineered chemical and nonchemical bonds between each layer. A very thin 3D core is inserted between two outer 2D layers to create a stack only about 30 nanometers thick. That’s about one-tenth the size of an average virus particle. 

“We created a new structure based on the innovations we’ve already made in my lab involving 2D materials,” Bae said. “Initially, we weren’t focused on energy storage, but during our exploration of material properties, we found a new physical phenomenon that we realized could be applied to energy storage, and that was both very interesting and potentially much more useful.”

The 2D/3D/2D heterostructures are finely crafted to sit in the sweet spot between conductivity and nonconductivity where semiconducting materials have optimal electric properties for energy storage. With this design, Bae and his collaborators reported an energy density up to 19 times higher than commercially available ferroelectric capacitors, and they achieved an efficiency over 90%, which is also unprecedented.

“We found that dielectric relaxation time can be modulated or induced by a very small gap in the material structure,” Bae explained. “That new physical phenomenon is something we hadn’t seen before. It enables us to manipulate dielectric material in such a way that it doesn’t polarize and lose charge capability.”

As the world grapples with the imperative of transitioning toward next-generation electronics components, Bae’s novel heterostructure material paves the way for high-performance electronic devices, encompassing high-power electronics, high-frequency wireless communication systems, and integrated circuit chips. These advancements are particularly crucial in sectors requiring robust power management solutions, such as electric vehicles and infrastructure development.

“Fundamentally, this structure we’ve developed is a novel electronic material,” Bae said. “We’re not yet 100% optimal, but already we’re outperforming what other labs are doing. Our next steps will be to make this material structure even better, so we can meet the need for ultrafast charging and discharging and very high energy densities in capacitors. We must be able to do that without losing storage capacity over repeated charges to see this material used broadly in large electronics, like electric vehicles, and other developing green technologies.”


Han S, Kim JS, Park E, Meng Y, Xu Z, Foucher AC, Jung GY, Roh I, Lee S, Kim SO, Moon JY, Kim SI, Bae S, Zhang X, Park BI, Seo S, Li Y, Shin H, Reidy K, Hoang AT, Sundaram S, Vuong P, Kim C, Zhao J, Hwang J, Wang C, Choi H, Kim DH, Kwon J, Park JH, Ougazzaden A, Lee JH, Ahn JH, Kim J, Mishra R, Kim HS, Ross FM, and Bae SH. High energy density in artificial heterostructures through relaxation time modulation. Science, April 18, 2024. DOI: https://www.science.org/doi/10.1126/science.adl2835 

Related

Source: Washington University in St.Louis

Recent Posts

Samsung Releases Automotive Molded 2220 1kV C0G MLCC

23.10.2025
7

VINATech Offers Smallest 100µF Al-Hybrid Capacitor

23.10.2025
20

Murata Integrates Component Models into Cadence EDA Tools

21.10.2025
27

High Energy Density Polymer Film Capacitors via Molecular and Interfacial Design

15.10.2025
26

KYOCERA AVX Expands Stacked MLCC Capacitors Offering

14.10.2025
41

Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

10.10.2025
77

Enhancing Energy Density in Nanocomposite Dielectric Capacitors

9.10.2025
41

Advances in the Environmental Performance of Polymer Capacitors

8.10.2025
68

Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

8.10.2025
36

Paumanok Releases Capacitor Foils Market Report 2025-2030

7.10.2025
30

Upcoming Events

Oct 28
8:00 - 15:00 CET

Power Up Your Design: SN6507 and the Ready-to-Use Development Kit

Oct 30
11:00 - 12:00 CET

Space Ceramic Capacitors with Flexible Testing

Nov 4
10:00 - 11:00 PST

Design and Stability Analysis of GaN Power Amplifiers using Advanced Simulation Tools

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version