Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    YAGEO Extends Antenna Portfolio with Wi‑Fi 6E/7 and Tri‑band GNSS Solutions

    SCHURTER Introduces 2410 SMD Fuse for Robust AC/DC Protection

    TDK Releases High Temp 175C Automotive NTC thermistors

    TU Wien Sets New Benchmark in Superconducting Vacuum Gap nanoCapacitors

    2026 Power Magnetics Design Trends: Flyback, DAB and Planar

    Vishay Releases Sulfur‑Resistant Chip Resistors

    Würth Elektronik Introduces Lead-Free SMT Spacers

    Schurter Releases EKO HV Fuses up to 1000 VDC, 1100 A

    Empower Releases High-Density Embedded Silicon Capacitors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    2026 Power Magnetics Design Trends: Flyback, DAB and Planar

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    YAGEO Extends Antenna Portfolio with Wi‑Fi 6E/7 and Tri‑band GNSS Solutions

    SCHURTER Introduces 2410 SMD Fuse for Robust AC/DC Protection

    TDK Releases High Temp 175C Automotive NTC thermistors

    TU Wien Sets New Benchmark in Superconducting Vacuum Gap nanoCapacitors

    2026 Power Magnetics Design Trends: Flyback, DAB and Planar

    Vishay Releases Sulfur‑Resistant Chip Resistors

    Würth Elektronik Introduces Lead-Free SMT Spacers

    Schurter Releases EKO HV Fuses up to 1000 VDC, 1100 A

    Empower Releases High-Density Embedded Silicon Capacitors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    2026 Power Magnetics Design Trends: Flyback, DAB and Planar

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Researchers Develop Computational Model to Build Better Capacitors

2.7.2020
Reading Time: 3 mins read
A A

Researchers at North Carolina State University have developed a computational model that helps users understand how changes in the nanostructure of materials affect their conductivity – with the goal of informing the development of new energy storage devices for a wide range of electronics.

Specifically, the researchers were focused on the materials used to make capacitors – which are energy storage devices used in everything from smartphones to satellites.

RelatedPosts

YAGEO Extends Antenna Portfolio with Wi‑Fi 6E/7 and Tri‑band GNSS Solutions

SCHURTER Introduces 2410 SMD Fuse for Robust AC/DC Protection

TDK Releases High Temp 175C Automotive NTC thermistors

“You probably use thousands of capacitors in your day-to-day life, whether you know it or not,” says Doug Irving, corresponding author of a paper on the work and an associate professor of materials science and engineering at NC State.

The material that a capacitor is made of affects its performance. So Irving and his collaborators set about developing a model to understand how structural characteristics in a material affect the material’s conductivity.

“One of the things that we’re pleased with is that this model looks at multiple spatial scales simultaneously – capturing everything that is happening from the device-level scale to the nanoscale,” Irving says.

“For example, our model looks at things like defects and grain boundaries,” Irving says. “Defects are things like missing atoms in a material’s structure, or where the ‘wrong’ atoms are found in the structure. Grain boundaries are where different crystalline structures run into each other. Well, our model looks at how things like defects and grain boundaries affect the presence and movement of electrons through a material.

“Because different ways of processing a material can control the presence and distribution of things like defects and grain boundaries, the model gives us insights that can be used to engineer materials to meet the demands of specific applications. In other words, we’re optimistic that the model can help us keep the cost of future capacitors low, while ensuring that they’ll work well and last a long time.”

The paper, “Influence of space charge on the conductivity of nanocrystalline SrTiO3,” is published in the Journal of Applied Physics. First author of the paper is Yifeng Wu, a Ph.D. student at NC State. The paper was co-authored by Preston Bowes and Jonathon Baker, who are both postdoctoral researchers at NC State. The work was done with support from the Air Force Office of Scientific Research, under grants FA9550-14-1-0264 and FA9550-17-1-0318; and support from a Defense Department National Defense Science and Engineering Graduate fellowship.

Abstract

“Influence of space charge on the conductivity of nanocrystalline SrTiO3”

Authors: Yifeng Wu, Preston C. Bowes, Jonathon N. Baker and Douglas L. Irving, North Carolina State University

Published: July 1, Journal of Applied Physics

DOI: 10.1063/5.0008020

A grand canonical multiscale space-charge model has been developed to study and predict the electrical properties of polycrystalline perovskites with complex defect chemistries. This model combines accurate data from hybrid exchange-correlation functional density functional theory calculations (defect formation energies, resultant grand canonical calculations of defect concentrations, and ionization states) with finite-element simulation of the electric field and its coupling to defect redistribution and reionization throughout the grain. This model was used to simulate the evolution of the oxygen partial pressure-dependent conductivity of polycrystalline acceptor-doped strontium titanate as grain size decreases, and the results were compared to previous experiments. These results demonstrate that as the grain size is reduced from microscale to nanoscale, the experimentally observed disappearance of ionic conductivity and forward shift of the oxygen partial pressure of the n-p crossover are successfully reproduced and explained by the model. Mechanistically, the changes to conductivity stem from the charge transfer from the grain boundary core into the grain interior, forming a space charge layer near the grain boundary core that perturbs the local defect chemistry. The impact of grain size on the electrical conductivity and the underlying defect chemistry across the grain are discussed. In addition to the findings herein, the model itself enables exploration of the electrical response of polycrystalline semiconductor systems with complex defect chemistries, which is critical to the design of future electronic components.

Related

Source: NC State University

Recent Posts

TU Wien Sets New Benchmark in Superconducting Vacuum Gap nanoCapacitors

16.2.2026
8

Empower Releases High-Density Embedded Silicon Capacitors

11.2.2026
41

TDK Unveils 125C Compact DC Link Film Capacitors

11.2.2026
26

SCHURTER Releases Coin Cell Supercapacitors for Backup Power

10.2.2026
21

Skeleton Technologies Expands in U.S. to Power AI Data Centers

9.2.2026
27

Smoltek CNF-MIM Capacitors Hit 1,000x Lower Leakage

6.2.2026
22

Murata Opens New Ceramic Capacitor Manufacturing and R&D Center in Japan

5.2.2026
87

Murata Publishes Power Delivery Guide for AI Servers

4.2.2026
118

Mechanical Drift Indicator of Tantalum Capacitor Anodes Degradation under Reverse Bias

3.2.2026
45

Upcoming Events

Feb 24
16:00 - 17:00 CET

Mastering Galvanic Isolation: Ensuring Safety in Power Electronics

Mar 3
16:00 - 17:00 CET

Cybersecurity at the Eleventh Hour – from RED to CRA – Information and Discussion

Mar 21
All day

PSMA Capacitor Workshop 2026

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • 3-Phase EMI Filter Design, Simulation, Calculation and Test

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version