Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Introduces High Current 80VDC Board-Mount EMI Filters

    Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

    TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

    Sumida Announces New DC Common Mode Choke Coil Series

    KYOCERA AVX Releases New 3dB Hybrid Couplers

    SCHURTER Unveils High Voltage Fuses for EV Applications

    YAGEO Releases First to Market 750V Aluminum Capacitors

    binder Introduces M9 Compact Circular Connector

    Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Introduces High Current 80VDC Board-Mount EMI Filters

    Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

    TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

    Sumida Announces New DC Common Mode Choke Coil Series

    KYOCERA AVX Releases New 3dB Hybrid Couplers

    SCHURTER Unveils High Voltage Fuses for EV Applications

    YAGEO Releases First to Market 750V Aluminum Capacitors

    binder Introduces M9 Compact Circular Connector

    Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Researchers Developed Gated Variable Supercapacitor G-CAPode

2.12.2024
Reading Time: 3 mins read
A A

Researchers from TU Dresden, Germany demonstrated a gated highly variable pseudocapacitor (supercapacitor) based on redox-window control (G-CAPode). The article was recently published in Energy Storage Materials Journal.

Researchers are proposing a novel iontronic device offering flexible control of the current output of a switchable electrochemical capacitor diode (CAPode) by introducing an additional “gate” electrode. This device mimics field-effect transistor (FET) semiconductors in controlling current output and recovers energy consumed during the forward charging, marking a significant breakthrough.

RelatedPosts

TDK Introduces High Current 80VDC Board-Mount EMI Filters

Bourns Releases High Heat Tolerant TO-227 Thick Film Resistor

TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

A recently developed unidirectional CAPode system (Ni3Bi2S2@Ni I 1 mol L-1 KOH I AC@Ni) serves as the “working” capacitor (W-Cap) in the novel architecture. The proposed G-CAPode (gate-controlled CAPode) features a third voltage-controlled connection between the “gate” and the counter electrode of the W-Cap.

By varying this third voltage channel the electrodes of W-Cap are shifted in potential toward negative or positive potential windows. Hence, by external voltage control the rectification ratios and blocking efficacy can be tuned which is essential for fully controlling the output signal in logic gates. A new circuit monitors the current and potential distribution of the NOT gate: The G-CAPode system exhibits transistor-like characteristics with a −1.2 V bias. This investigation highlights the versatility of the G-CAPode system across applications where transistor-like behavior and accurate current regulation are beneficial, promising advancements in ionologic devices, sensors, and energy storage systems.

The device proposed here is the first of its kind, in which the electrochemical response of a switchable electrochemical capacitor diode (CAPode) is deliberately controlled over several orders of magnitude by introducing a third “gate” electrode (GE) into this system.

By applying an appropriate bias potential to the GE, it is possible to control the rectification ratios and capacitance, a novel feature as compared to earlier CAPodes developed. In essence, the new system represents truly a variable capacitor. The analysis of the mechanism of the G-CAPode operation (constructed here based on the ion-selective redox surface effect in Ni3Bi2S2@Ni I 1 mol L-1 KOH I AC@Ni CAPode) provides a rational basis for an entire platform of future controllable ionotronic devices, a new family of variable capacitors based on deliberate potential window control of pseudocapacitive systems.

Considering the rich redox chemistry in aqueous and non-aqueous systems as well as the enormous number of publications on pseudocapacitors, the new G-CAPode architecture may be rapidly expandable into a generic platform of switchable PCs offering a wide range of operational windows for various applications.

Variable capacitors are an essential element in adiabatic computing with reduced energy consumption. Furthermore, they are used in filters and oscillators. A proof-of-concept NOT gate provided effective operation based on the novel G-CAPode performance and in depth understanding by monitoring the current and potential distribution.

The G-CAPode system exhibits transistor-like behavior under certain bias conditions determined by the potential matching of WE and GR at a specific bias voltage. Variations in bias voltage leads to significant amplification and variation of the current response over more than three orders of magnitude by manipulating the electrode potentials and extent of redox reactions and current flow.

Overall, the study highlights the potential of the G-CAPode system for various applications where transistor-like behavior and precise control of current flow are desirable. Further research in this area could lead to advancements in electronic devices, wearables, sensors, and power regulation of energy storage systems. The proof-of-concept applications of such variable ultracapacitor systems in logic circuits, signal switching and current amplification is promising. Further research may reveal the wide applicability of the G-CAPode concept and demonstration of scalability.

Link to the original scientific article:

Ahmed Bahrawy, Przemyslaw Galek, Christin Gellrich, Nick Niese, Julia Grothe, Stefan Kaskel, “A gated highly variable pseudocapacitor based on redox-window control (G-CAPode)”, Energy Storage Materials, Volume 74, 2025, 103872, ISSN 2405-8297,
https://doi.org/10.1016/j.ensm.2024.103872

Related

Source: Science Direct

Recent Posts

YAGEO Releases First to Market 750V Aluminum Capacitors

30.6.2025
33

Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

30.6.2025
17

Learn How Supercapacitors Enhance Power System in Knowles eBook

30.6.2025
13

TDK Releases Industry First 1uF 100V X7R MLCCs in 1608 Case

27.6.2025
18

YAGEO Extends Lifetime of its Aluminum SMD Chip Capacitors to 5500hrs at 125C/Ur

27.6.2025
21

Murata Releases Worlds First 10µF/50V Automotive MLCC in 0805 Size

26.6.2025
47

Advancements and Applications of Switch Capacitor Power Converters

25.6.2025
34

Samsung Delivers Silicon Capacitors to Marwell AI Systems

24.6.2025
62

Smolteks CNF MIM Capacitor Break 1 µF/mm²

19.6.2025
40

Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

19.6.2025
23

Upcoming Events

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

Jul 29
16:00 - 17:00 CEST

Impact of Elevated Voltage and Temperature on Molded Power Inductors in DC/DC converters

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version