Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Advances in the Environmental Performance of Polymer Capacitors

    Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

    Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

    Paumanok Releases Capacitor Foils Market Report 2025-2030

    Modelithics Welcomes CapV as a Sponsoring MVP

    Wk 40 Electronics Supply Chain Digest

    Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

    Electrolyte Selection and Performance in Supercapacitors

    Connector PCB Design Challenges

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Advances in the Environmental Performance of Polymer Capacitors

    Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

    Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

    Paumanok Releases Capacitor Foils Market Report 2025-2030

    Modelithics Welcomes CapV as a Sponsoring MVP

    Wk 40 Electronics Supply Chain Digest

    Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

    Electrolyte Selection and Performance in Supercapacitors

    Connector PCB Design Challenges

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Researchers Developed Gated Variable Supercapacitor G-CAPode

2.12.2024
Reading Time: 3 mins read
A A

Researchers from TU Dresden, Germany demonstrated a gated highly variable pseudocapacitor (supercapacitor) based on redox-window control (G-CAPode). The article was recently published in Energy Storage Materials Journal.

Researchers are proposing a novel iontronic device offering flexible control of the current output of a switchable electrochemical capacitor diode (CAPode) by introducing an additional “gate” electrode. This device mimics field-effect transistor (FET) semiconductors in controlling current output and recovers energy consumed during the forward charging, marking a significant breakthrough.

RelatedPosts

Advances in the Environmental Performance of Polymer Capacitors

Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

A recently developed unidirectional CAPode system (Ni3Bi2S2@Ni I 1 mol L-1 KOH I AC@Ni) serves as the “working” capacitor (W-Cap) in the novel architecture. The proposed G-CAPode (gate-controlled CAPode) features a third voltage-controlled connection between the “gate” and the counter electrode of the W-Cap.

By varying this third voltage channel the electrodes of W-Cap are shifted in potential toward negative or positive potential windows. Hence, by external voltage control the rectification ratios and blocking efficacy can be tuned which is essential for fully controlling the output signal in logic gates. A new circuit monitors the current and potential distribution of the NOT gate: The G-CAPode system exhibits transistor-like characteristics with a −1.2 V bias. This investigation highlights the versatility of the G-CAPode system across applications where transistor-like behavior and accurate current regulation are beneficial, promising advancements in ionologic devices, sensors, and energy storage systems.

The device proposed here is the first of its kind, in which the electrochemical response of a switchable electrochemical capacitor diode (CAPode) is deliberately controlled over several orders of magnitude by introducing a third “gate” electrode (GE) into this system.

By applying an appropriate bias potential to the GE, it is possible to control the rectification ratios and capacitance, a novel feature as compared to earlier CAPodes developed. In essence, the new system represents truly a variable capacitor. The analysis of the mechanism of the G-CAPode operation (constructed here based on the ion-selective redox surface effect in Ni3Bi2S2@Ni I 1 mol L-1 KOH I AC@Ni CAPode) provides a rational basis for an entire platform of future controllable ionotronic devices, a new family of variable capacitors based on deliberate potential window control of pseudocapacitive systems.

Considering the rich redox chemistry in aqueous and non-aqueous systems as well as the enormous number of publications on pseudocapacitors, the new G-CAPode architecture may be rapidly expandable into a generic platform of switchable PCs offering a wide range of operational windows for various applications.

Variable capacitors are an essential element in adiabatic computing with reduced energy consumption. Furthermore, they are used in filters and oscillators. A proof-of-concept NOT gate provided effective operation based on the novel G-CAPode performance and in depth understanding by monitoring the current and potential distribution.

The G-CAPode system exhibits transistor-like behavior under certain bias conditions determined by the potential matching of WE and GR at a specific bias voltage. Variations in bias voltage leads to significant amplification and variation of the current response over more than three orders of magnitude by manipulating the electrode potentials and extent of redox reactions and current flow.

Overall, the study highlights the potential of the G-CAPode system for various applications where transistor-like behavior and precise control of current flow are desirable. Further research in this area could lead to advancements in electronic devices, wearables, sensors, and power regulation of energy storage systems. The proof-of-concept applications of such variable ultracapacitor systems in logic circuits, signal switching and current amplification is promising. Further research may reveal the wide applicability of the G-CAPode concept and demonstration of scalability.

Link to the original scientific article:

Ahmed Bahrawy, Przemyslaw Galek, Christin Gellrich, Nick Niese, Julia Grothe, Stefan Kaskel, “A gated highly variable pseudocapacitor based on redox-window control (G-CAPode)”, Energy Storage Materials, Volume 74, 2025, 103872, ISSN 2405-8297,
https://doi.org/10.1016/j.ensm.2024.103872

Related

Source: Science Direct

Recent Posts

Advances in the Environmental Performance of Polymer Capacitors

8.10.2025
2

Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

8.10.2025
2

Paumanok Releases Capacitor Foils Market Report 2025-2030

7.10.2025
9

Modelithics Welcomes CapV as a Sponsoring MVP

7.10.2025
2

Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

3.10.2025
20

Electrolyte Selection and Performance in Supercapacitors

3.10.2025
16

Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

2.10.2025
24

How to Manage Supercapacitors Leakage Current and Self Discharge 

1.10.2025
39

Qualification of Commercial Supercapacitors for Space Applications

1.10.2025
38

Resonant Capacitors in High-Power Resonant Circuits

1.10.2025
37

Upcoming Events

Oct 14
16:00 - 17:00 CEST

Smart Sensors, Smarter AI: Building Reliable Edge Systems

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Oct 28
8:00 - 15:00 CET

Power Up Your Design: SN6507 and the Ready-to-Use Development Kit

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version