Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Developing Low Inductance Film Capacitor using Bode 100 Analyzer

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Würth Elektronik Releases High Performance TLVR Coupled Inductors

    YAGEO Extends Rectangular Aluminum Electrolytic Capacitor Family

    Dr. Tomas Zednicek Vision for Europe 2025 Passive Electronics Market

    Littelfuse Releases Industry-First SMD Fuse with 1500A Interrupting Rating at 277V

    TDK Unveils Industry Highest Rated Current Multilayer Chip Beads

    Vishay Releases Automotive SMD Thick Film Power Resistor for Enhanced Protection Against Short Transient Pulses

    Exxelia Power Film Capacitors Support Critical Systems Across Various Industries

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Developing Low Inductance Film Capacitor using Bode 100 Analyzer

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Würth Elektronik Releases High Performance TLVR Coupled Inductors

    YAGEO Extends Rectangular Aluminum Electrolytic Capacitor Family

    Dr. Tomas Zednicek Vision for Europe 2025 Passive Electronics Market

    Littelfuse Releases Industry-First SMD Fuse with 1500A Interrupting Rating at 277V

    TDK Unveils Industry Highest Rated Current Multilayer Chip Beads

    Vishay Releases Automotive SMD Thick Film Power Resistor for Enhanced Protection Against Short Transient Pulses

    Exxelia Power Film Capacitors Support Critical Systems Across Various Industries

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Researchers Developed High Energy Ferroelectric BNT Dielectric by Aliovalent Sm-doping

27.11.2024
Reading Time: 4 mins read
A A
Aliovalent Sm-doping at A-site enables defect-induced phase competition between tetragonal phase and pseudo-cubic phase not only strengthens polarization switching ability but also improves dielectric temperature stability via thermal evolutions.Credit: Journal of Advanced Ceramics, Tsinghua University Press

Aliovalent Sm-doping at A-site enables defect-induced phase competition between tetragonal phase and pseudo-cubic phase not only strengthens polarization switching ability but also improves dielectric temperature stability via thermal evolutions.Credit: Journal of Advanced Ceramics, Tsinghua University Press

Researchers from Jingdezhen Ceramic University, Institute of Tsinghua University, Zhejiang province, China reported aliovalent doped Sm0.07-BNBST ceramics to achieve a high energy efficiency of 91% together with a recoverable energy density of 2.1 J/cm3 at a low electric field of 114 kV/cm, which exceeds other reported dielectric materials at the same electric field.

High-quality relaxor ferroelectric BNT-based ceramic dielectrics achieved high discharge density by many methods of chemical doping, hierarchical structure design, advanced sintering technology, and defect structure engineering.

RelatedPosts

Developing Low Inductance Film Capacitor using Bode 100 Analyzer

Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

Würth Elektronik Releases High Performance TLVR Coupled Inductors

Unfortunately, the inferior energy efficiency of BNT-based ceramics is still at a level of 60 to 70%, which means a large portion of stored energy is dissipated generating more joule heat. Notably, low energy efficiency is a long-time neglected but important issue, and corresponding solutions need to be developed.

Recently, a research group of dielectric materials for energy storage capacitor led by Prof. Dr. Zong-Yang Shen from Jingdezhen Ceramic University, reported aliovalent rare earth ion Sm3+-doped relaxor ferroelectric Ba0.12Na0.3Bi0.3Sr0.28SmxTiO3 (abbreviated as Smx-BNBST) solid solutions thorough defect-engineered phase/domain structure competition. Sm0.07-BNBST ceramics achieve a high energy efficiency of 91% together with a recoverable energy density of 2.1 J/cm3 at a low electric field of 114 kV/cm, which exceeds other reported dielectric materials at the same electric field.

“In this work, we proposed that defect-induced phase competition between tetragonal phase P4bm and pseudo-cubic phase Pm3m not only strengthens polarization switching ability but also improves dielectric temperature stability via thermal evolutions. More importantly, a high 91% energy efficiency with discharge density of 2.1 J/cm3 was achieved in Sm0.07-BNBST ceramics at a low electric field of 114 kV/cm, which is closely related to a reduced Pr demonstrated by PFM measurement.” said Prof. Zong-Yang Shen, vice dean at School of Materials Science and Engineering, Jingdezhen Ceramic University (China), whose research interests include dielectric ceramics for high power density energy storage capacitors, and high Curie temperature piezoelectric ceramics.

“Reduced domain size determines the remanent polarization (Pr), while the competition between tetragonal phase and pseudo-cubic phase determines the maximum polarization (Pmax). For the x=0 composition, it exhibits obvious ferroelectricity with increasing voltage; and after the electric field is removed, the polarization direction is still maintained and difficult to return to the initial state, corresponding to a high Pr. For the x=0.07 composition, the ferroelectricity is significantly weakened; when the external voltage is removed, the polarization direction can quickly return to the initial state, corresponding to a low Pr. The rapid response of polarization switching in Sm0.07-BNBST ceramics indicates that it has highly active polar nanoregions (PNRs), which produce low Pr and moderate Pmax, contributing to enhanced energy density and efficiency.” said Zong-Yang Shen.

“As the Sm concentration increases, the P-E loops of Smx-BNBST ceramics gradually become slimmer, and both Pmax and Pr gradually decrease, indicating that Sm doping weakens the ferroelectricity. When the Sm equals to 0.07 mol, Pmax shows a sudden increase, which may be related to the synergistic contributions of tetragonal/pseudo-cubic phase competition and reduced domain size.” said Zong-Yang Shen.

“Compared with pure BNBST ceramics with one dielectric peak of <100 °C, Smx-BNBST ceramics exhibit a new weak dielectric peak near ~200°C, which should be related to the thermal evolution of defect-induced phase competition between tetragonal phase and pseudo-cubic phase in BNT ceramics. As the Sm concentration increases, the dielectric peaks gradually broaden, and corresponding transition temperature Tm1 shifts towards lower temperatures, strengthening the dielectric temperature stability.” said Zong-Yang Shen.

Prof. Zong-Yang Shen said “In the following work, we will do research on designing and analyzing the influence of defect structure on dielectric and ferroelectric behaviors of BNT-based ceramics.” He hopes to obtain a BNT-based ceramics with high discharge density and energy efficiency at low electric field, and then fabricate them into multi-layer ceramic capacitors (MLCCs) to advance the development of dielectric materials in practical applications.

Link to the scientific paper:

Li D-X, Deng W, Shen Z-Y, et al. Aliovalent Sm-doping enables BNT-based realxor ferroelectric ceramics with > 90% energy efficiency. Journal of Advanced Ceramics, 2024, https://doi.org/10.26599/JAC.2024.9220999

Related

Source: Journal of Advanced Ceramics

Recent Posts

Developing Low Inductance Film Capacitor using Bode 100 Analyzer

15.5.2025
11

YAGEO Extends Rectangular Aluminum Electrolytic Capacitor Family

15.5.2025
18

Dr. Tomas Zednicek Vision for Europe 2025 Passive Electronics Market

14.5.2025
20

Exxelia Power Film Capacitors Support Critical Systems Across Various Industries

13.5.2025
20

H2-Assisted Thermal Treatment of Electrode Materials Increases Supercapacitors Energy Density

13.5.2025
9

Researchers Present Hybrid Supercapacitor Zn-Ion Microcapacitors

12.5.2025
21

Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

6.5.2025
92

Murata and NIMS Built New Database of Dielectric Material Properties

5.5.2025
59

Tariffs Crush Sales Sentiment in April 2025 ECST Results

5.5.2025
81

Solid State Polymer Multilayer Capacitors For High Temperature Application

2.5.2025
45

Upcoming Events

May 28
16:00 - 17:00 CEST

Power Over Data Line

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • YAGEO Extends Rectangular Aluminum Electrolytic Capacitor Family

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version