Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Modelithics Library for MATLAB: Measurement-Based Models for Microwave and RF Passive Components

    Bourns Extends Multilayer Chip Inductors Offer for RF and Wireless Designs

    Researchers developed a polymer capacitor by combining two cheap, commercially available plastics. The new polymer capacitor makes use of the transparent material — pictured here, with vintage Penn State athletic marks visible through it — to store four times the energy and withstand significantly more heat.  Credit: Penn State

    Penn State Demonstrated Polymer Alloy Capacitor Film with 4× Energy Density up to 250C

    ECIA January 2026 Reports Strong Sales Confidence

    Vishay Unveils Ultra-Compact 0201 Thick Film Chip Resistors

    Würth Elektronik Component Data Live in Accuris

    Coilcraft Releases Automotive Common Mode Chokes

    MLCC Manufacturers Consider Price Increase as AI Demand Outpaces Supply

    YAGEO Extends Antenna Portfolio with Wi‑Fi 6E/7 and Tri‑band GNSS Solutions

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    2026 Power Magnetics Design Trends: Flyback, DAB and Planar

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Modelithics Library for MATLAB: Measurement-Based Models for Microwave and RF Passive Components

    Bourns Extends Multilayer Chip Inductors Offer for RF and Wireless Designs

    Researchers developed a polymer capacitor by combining two cheap, commercially available plastics. The new polymer capacitor makes use of the transparent material — pictured here, with vintage Penn State athletic marks visible through it — to store four times the energy and withstand significantly more heat.  Credit: Penn State

    Penn State Demonstrated Polymer Alloy Capacitor Film with 4× Energy Density up to 250C

    ECIA January 2026 Reports Strong Sales Confidence

    Vishay Unveils Ultra-Compact 0201 Thick Film Chip Resistors

    Würth Elektronik Component Data Live in Accuris

    Coilcraft Releases Automotive Common Mode Chokes

    MLCC Manufacturers Consider Price Increase as AI Demand Outpaces Supply

    YAGEO Extends Antenna Portfolio with Wi‑Fi 6E/7 and Tri‑band GNSS Solutions

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    2026 Power Magnetics Design Trends: Flyback, DAB and Planar

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Researchers Developed High Energy Ferroelectric BNT Dielectric by Aliovalent Sm-doping

27.11.2024
Reading Time: 4 mins read
A A
Aliovalent Sm-doping at A-site enables defect-induced phase competition between tetragonal phase and pseudo-cubic phase not only strengthens polarization switching ability but also improves dielectric temperature stability via thermal evolutions.Credit: Journal of Advanced Ceramics, Tsinghua University Press

Aliovalent Sm-doping at A-site enables defect-induced phase competition between tetragonal phase and pseudo-cubic phase not only strengthens polarization switching ability but also improves dielectric temperature stability via thermal evolutions.Credit: Journal of Advanced Ceramics, Tsinghua University Press

Researchers from Jingdezhen Ceramic University, Institute of Tsinghua University, Zhejiang province, China reported aliovalent doped Sm0.07-BNBST ceramics to achieve a high energy efficiency of 91% together with a recoverable energy density of 2.1 J/cm3 at a low electric field of 114 kV/cm, which exceeds other reported dielectric materials at the same electric field.

High-quality relaxor ferroelectric BNT-based ceramic dielectrics achieved high discharge density by many methods of chemical doping, hierarchical structure design, advanced sintering technology, and defect structure engineering.

RelatedPosts

Modelithics Library for MATLAB: Measurement-Based Models for Microwave and RF Passive Components

Bourns Extends Multilayer Chip Inductors Offer for RF and Wireless Designs

Penn State Demonstrated Polymer Alloy Capacitor Film with 4× Energy Density up to 250C

Unfortunately, the inferior energy efficiency of BNT-based ceramics is still at a level of 60 to 70%, which means a large portion of stored energy is dissipated generating more joule heat. Notably, low energy efficiency is a long-time neglected but important issue, and corresponding solutions need to be developed.

Recently, a research group of dielectric materials for energy storage capacitor led by Prof. Dr. Zong-Yang Shen from Jingdezhen Ceramic University, reported aliovalent rare earth ion Sm3+-doped relaxor ferroelectric Ba0.12Na0.3Bi0.3Sr0.28SmxTiO3 (abbreviated as Smx-BNBST) solid solutions thorough defect-engineered phase/domain structure competition. Sm0.07-BNBST ceramics achieve a high energy efficiency of 91% together with a recoverable energy density of 2.1 J/cm3 at a low electric field of 114 kV/cm, which exceeds other reported dielectric materials at the same electric field.

“In this work, we proposed that defect-induced phase competition between tetragonal phase P4bm and pseudo-cubic phase Pm3m not only strengthens polarization switching ability but also improves dielectric temperature stability via thermal evolutions. More importantly, a high 91% energy efficiency with discharge density of 2.1 J/cm3 was achieved in Sm0.07-BNBST ceramics at a low electric field of 114 kV/cm, which is closely related to a reduced Pr demonstrated by PFM measurement.” said Prof. Zong-Yang Shen, vice dean at School of Materials Science and Engineering, Jingdezhen Ceramic University (China), whose research interests include dielectric ceramics for high power density energy storage capacitors, and high Curie temperature piezoelectric ceramics.

“Reduced domain size determines the remanent polarization (Pr), while the competition between tetragonal phase and pseudo-cubic phase determines the maximum polarization (Pmax). For the x=0 composition, it exhibits obvious ferroelectricity with increasing voltage; and after the electric field is removed, the polarization direction is still maintained and difficult to return to the initial state, corresponding to a high Pr. For the x=0.07 composition, the ferroelectricity is significantly weakened; when the external voltage is removed, the polarization direction can quickly return to the initial state, corresponding to a low Pr. The rapid response of polarization switching in Sm0.07-BNBST ceramics indicates that it has highly active polar nanoregions (PNRs), which produce low Pr and moderate Pmax, contributing to enhanced energy density and efficiency.” said Zong-Yang Shen.

“As the Sm concentration increases, the P-E loops of Smx-BNBST ceramics gradually become slimmer, and both Pmax and Pr gradually decrease, indicating that Sm doping weakens the ferroelectricity. When the Sm equals to 0.07 mol, Pmax shows a sudden increase, which may be related to the synergistic contributions of tetragonal/pseudo-cubic phase competition and reduced domain size.” said Zong-Yang Shen.

“Compared with pure BNBST ceramics with one dielectric peak of <100 °C, Smx-BNBST ceramics exhibit a new weak dielectric peak near ~200°C, which should be related to the thermal evolution of defect-induced phase competition between tetragonal phase and pseudo-cubic phase in BNT ceramics. As the Sm concentration increases, the dielectric peaks gradually broaden, and corresponding transition temperature Tm1 shifts towards lower temperatures, strengthening the dielectric temperature stability.” said Zong-Yang Shen.

Prof. Zong-Yang Shen said “In the following work, we will do research on designing and analyzing the influence of defect structure on dielectric and ferroelectric behaviors of BNT-based ceramics.” He hopes to obtain a BNT-based ceramics with high discharge density and energy efficiency at low electric field, and then fabricate them into multi-layer ceramic capacitors (MLCCs) to advance the development of dielectric materials in practical applications.

Link to the scientific paper:

Li D-X, Deng W, Shen Z-Y, et al. Aliovalent Sm-doping enables BNT-based realxor ferroelectric ceramics with > 90% energy efficiency. Journal of Advanced Ceramics, 2024, https://doi.org/10.26599/JAC.2024.9220999

Related

Source: Journal of Advanced Ceramics

Recent Posts

Researchers developed a polymer capacitor by combining two cheap, commercially available plastics. The new polymer capacitor makes use of the transparent material — pictured here, with vintage Penn State athletic marks visible through it — to store four times the energy and withstand significantly more heat.  Credit: Penn State

Penn State Demonstrated Polymer Alloy Capacitor Film with 4× Energy Density up to 250C

19.2.2026
19

Würth Elektronik Component Data Live in Accuris

19.2.2026
14

MLCC Manufacturers Consider Price Increase as AI Demand Outpaces Supply

18.2.2026
167

TU Wien Sets New Benchmark in Superconducting Vacuum Gap nanoCapacitors

16.2.2026
11

Empower Releases High-Density Embedded Silicon Capacitors

11.2.2026
55

TDK Unveils 125C Compact DC Link Film Capacitors

11.2.2026
34

SCHURTER Releases Coin Cell Supercapacitors for Backup Power

10.2.2026
26

Skeleton Technologies Expands in U.S. to Power AI Data Centers

9.2.2026
34

Smoltek CNF-MIM Capacitors Hit 1,000x Lower Leakage

6.2.2026
22

Upcoming Events

Feb 24
16:00 - 17:00 CET

Mastering Galvanic Isolation: Ensuring Safety in Power Electronics

Mar 3
16:00 - 17:00 CET

Cybersecurity at the Eleventh Hour – from RED to CRA – Information and Discussion

Mar 21
All day

PSMA Capacitor Workshop 2026

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version