Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Würth Elektronik Unveils Compact Common-Mode Data Lines Chokes

    Bourns Releases TCO 240 Watt USB Mini-Breaker

    Littelfuse Adds 600W Automotive TVS Diodes for High-Energy Transient Protection

    Vishay Releases Harsh Environment Robust DC-Link Film Capacitor

    Bourns Releases Automotive High Creepage and Clearance Transformer

    Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

    Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

    Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

    Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Würth Elektronik Unveils Compact Common-Mode Data Lines Chokes

    Bourns Releases TCO 240 Watt USB Mini-Breaker

    Littelfuse Adds 600W Automotive TVS Diodes for High-Energy Transient Protection

    Vishay Releases Harsh Environment Robust DC-Link Film Capacitor

    Bourns Releases Automotive High Creepage and Clearance Transformer

    Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

    Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

    Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

    Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Researchers Developed High Energy Ferroelectric BNT Dielectric by Aliovalent Sm-doping

27.11.2024
Reading Time: 4 mins read
A A
Aliovalent Sm-doping at A-site enables defect-induced phase competition between tetragonal phase and pseudo-cubic phase not only strengthens polarization switching ability but also improves dielectric temperature stability via thermal evolutions.Credit: Journal of Advanced Ceramics, Tsinghua University Press

Aliovalent Sm-doping at A-site enables defect-induced phase competition between tetragonal phase and pseudo-cubic phase not only strengthens polarization switching ability but also improves dielectric temperature stability via thermal evolutions.Credit: Journal of Advanced Ceramics, Tsinghua University Press

Researchers from Jingdezhen Ceramic University, Institute of Tsinghua University, Zhejiang province, China reported aliovalent doped Sm0.07-BNBST ceramics to achieve a high energy efficiency of 91% together with a recoverable energy density of 2.1 J/cm3 at a low electric field of 114 kV/cm, which exceeds other reported dielectric materials at the same electric field.

High-quality relaxor ferroelectric BNT-based ceramic dielectrics achieved high discharge density by many methods of chemical doping, hierarchical structure design, advanced sintering technology, and defect structure engineering.

RelatedPosts

Würth Elektronik Unveils Compact Common-Mode Data Lines Chokes

Bourns Releases TCO 240 Watt USB Mini-Breaker

Littelfuse Adds 600W Automotive TVS Diodes for High-Energy Transient Protection

Unfortunately, the inferior energy efficiency of BNT-based ceramics is still at a level of 60 to 70%, which means a large portion of stored energy is dissipated generating more joule heat. Notably, low energy efficiency is a long-time neglected but important issue, and corresponding solutions need to be developed.

Recently, a research group of dielectric materials for energy storage capacitor led by Prof. Dr. Zong-Yang Shen from Jingdezhen Ceramic University, reported aliovalent rare earth ion Sm3+-doped relaxor ferroelectric Ba0.12Na0.3Bi0.3Sr0.28SmxTiO3 (abbreviated as Smx-BNBST) solid solutions thorough defect-engineered phase/domain structure competition. Sm0.07-BNBST ceramics achieve a high energy efficiency of 91% together with a recoverable energy density of 2.1 J/cm3 at a low electric field of 114 kV/cm, which exceeds other reported dielectric materials at the same electric field.

“In this work, we proposed that defect-induced phase competition between tetragonal phase P4bm and pseudo-cubic phase Pm3m not only strengthens polarization switching ability but also improves dielectric temperature stability via thermal evolutions. More importantly, a high 91% energy efficiency with discharge density of 2.1 J/cm3 was achieved in Sm0.07-BNBST ceramics at a low electric field of 114 kV/cm, which is closely related to a reduced Pr demonstrated by PFM measurement.” said Prof. Zong-Yang Shen, vice dean at School of Materials Science and Engineering, Jingdezhen Ceramic University (China), whose research interests include dielectric ceramics for high power density energy storage capacitors, and high Curie temperature piezoelectric ceramics.

“Reduced domain size determines the remanent polarization (Pr), while the competition between tetragonal phase and pseudo-cubic phase determines the maximum polarization (Pmax). For the x=0 composition, it exhibits obvious ferroelectricity with increasing voltage; and after the electric field is removed, the polarization direction is still maintained and difficult to return to the initial state, corresponding to a high Pr. For the x=0.07 composition, the ferroelectricity is significantly weakened; when the external voltage is removed, the polarization direction can quickly return to the initial state, corresponding to a low Pr. The rapid response of polarization switching in Sm0.07-BNBST ceramics indicates that it has highly active polar nanoregions (PNRs), which produce low Pr and moderate Pmax, contributing to enhanced energy density and efficiency.” said Zong-Yang Shen.

“As the Sm concentration increases, the P-E loops of Smx-BNBST ceramics gradually become slimmer, and both Pmax and Pr gradually decrease, indicating that Sm doping weakens the ferroelectricity. When the Sm equals to 0.07 mol, Pmax shows a sudden increase, which may be related to the synergistic contributions of tetragonal/pseudo-cubic phase competition and reduced domain size.” said Zong-Yang Shen.

“Compared with pure BNBST ceramics with one dielectric peak of <100 °C, Smx-BNBST ceramics exhibit a new weak dielectric peak near ~200°C, which should be related to the thermal evolution of defect-induced phase competition between tetragonal phase and pseudo-cubic phase in BNT ceramics. As the Sm concentration increases, the dielectric peaks gradually broaden, and corresponding transition temperature Tm1 shifts towards lower temperatures, strengthening the dielectric temperature stability.” said Zong-Yang Shen.

Prof. Zong-Yang Shen said “In the following work, we will do research on designing and analyzing the influence of defect structure on dielectric and ferroelectric behaviors of BNT-based ceramics.” He hopes to obtain a BNT-based ceramics with high discharge density and energy efficiency at low electric field, and then fabricate them into multi-layer ceramic capacitors (MLCCs) to advance the development of dielectric materials in practical applications.

Link to the scientific paper:

Li D-X, Deng W, Shen Z-Y, et al. Aliovalent Sm-doping enables BNT-based realxor ferroelectric ceramics with > 90% energy efficiency. Journal of Advanced Ceramics, 2024, https://doi.org/10.26599/JAC.2024.9220999

Related

Source: Journal of Advanced Ceramics

Recent Posts

Vishay Releases Harsh Environment Robust DC-Link Film Capacitor

2.9.2025
8

Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

29.8.2025
26

Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

28.8.2025
13

Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

28.8.2025
26

Samsung Releases Ultra–High-Capacitance 4.7uF 2.5V MLCC in 0201 for AI GPU

27.8.2025
36

Non-Linear MLCC Class II Capacitor Measurements Challenges

19.8.2025
62

Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

19.8.2025
19

High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

12.8.2025
185

Radiation Tolerance of Tantalum and Ceramic Capacitors

8.8.2025
121

TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

7.8.2025
39

Upcoming Events

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version