Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    ESR of Capacitors, Measurements and Applications

    Murata Christophe Pottier Appointed President of EPCIA

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    YAGEO Unveils Compact 2.4 GHz SMD Antenna

    KYOCERA AVX Releases Antenna for Iridium Satellite IoT Applications

    Molex Releases Industry-First Quad-Row Board-to-Board Connectors with EMI Shields

    Image credit: Samtec

    How to Match the Right Connector with Protocol Requirements

    Smoltek CNF-MIM Capacitors Pass 1,000h Reliability Test

    Capacitor Lead Times: October 2025

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    ESR of Capacitors, Measurements and Applications

    Murata Christophe Pottier Appointed President of EPCIA

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    YAGEO Unveils Compact 2.4 GHz SMD Antenna

    KYOCERA AVX Releases Antenna for Iridium Satellite IoT Applications

    Molex Releases Industry-First Quad-Row Board-to-Board Connectors with EMI Shields

    Image credit: Samtec

    How to Match the Right Connector with Protocol Requirements

    Smoltek CNF-MIM Capacitors Pass 1,000h Reliability Test

    Capacitor Lead Times: October 2025

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Researchers Increase Cell Voltage of Aqueous Supercapacitors by Electrode Surface Adjustments

31.12.2024
Reading Time: 4 mins read
A A

Researchers from University of Alicante, Spain and CNRS  Orléans France published in Carbon Jurnal its research on Adjusting the electrode surface functionality to improve the cell voltage of aqueous electrolyte carbon/carbon supercapacitors.

This article focuses on improving the performance of supercapacitors with aqueous electrolytes by modifying the surface of carbon electrodes.

RelatedPosts

ESR of Capacitors, Measurements and Applications

Murata Christophe Pottier Appointed President of EPCIA

3-Phase EMI Filter Design, Simulation, Calculation and Test

The key points of the research:

  1. Increasing Cell Voltage: Supercapacitors with carbon electrodes and Li₂SO₄ electrolyte can achieve a cell voltage of 1.8 V. Surface modifications can increase this voltage to 2.2 V.
  2. Positive Electrode Protection: Modifying the surface of carbon electrodes reduces oxidation and enhances stability.
  3. Surface Modification Methods: Techniques include chemical oxidation, hydrogen reduction, and chemical grafting.
  4. Electrochemical Characterization: Tests such as cyclic voltammetry, galvanostatic charge/discharge, and impedance were conducted.
  5. Results and Discussion: Surface modifications of carbon electrodes improve the performance and stability of supercapacitors.

Abstract

Improving the performance of supercapacitors in terms of energy density is a major technical challenge, especially in aqueous media where the operating voltage is limited by the electrochemical stability window of water and by undesirable reactions at the electrode/electrolyte interface. Carbon/carbon supercapacitors using 1.0 mol L−1 Li2SO4 as electrolyte can achieve cell voltages of 1.8 V.

Beyond this value, long-term supercapacitor operation is limited by positive electrode degradation due to irreversible oxidation reactions at the carbon/electrolyte interface. Such degradation processes can be minimized by selectively modifying the surface functionality of the porous carbon active electrode material. An in-depth study of the effect of different surface functionalities on the ageing of the supercapacitor, combining quantitative analysis of the gas generated during operation with electrochemical techniques and physical characterization of the carbon electrode, showed that among the different processes, the chemical grafting of low amounts of phenyl functionalities is the most effective in preventing the oxidation of the carbon. The origin of the resistance to oxidation was a combined effect of the blocking of active sites and the reduction of the local pH at the interface.

The cell voltage can be increased to 2.2 V and the energy density more than doubled by using an asymmetric system with the modified carbon as the positive electrode and an unmodified carbon as the negative electrode.

Conclusions

The effect of the surface functionality of carbon-based electrodes in aqueous electrolytes has been investigated from the point of view of decreasing the carbon reactivity at the positive electrode to avoid electrode degradation and to increase the cell voltage. A detailed analysis was conducted by examining gas levels and compositions during ageing, alongside the evolution of the physicochemical properties of carbon electrodes and electrochemical performance.

The results show that the numerous active oxidation sites initially present on the carbon surface cannot be fully removed by thermal hydrogen treatment, which only saturates high-energy sites with unpaired electrons. Similarly, chemical oxidation offers limited protection to the positive electrode. In contrast, after a chemical grafting, the carbon show significantly higher oxidation resistance, as grafted groups block active sites at graphene layer edges. This protection is more effective when the phenyl group bonded to active sites lacks electron-withdrawing groups, like carboxylic acid. The combination of this active site blocking effect with a reduction in the pHPZC to increase the oxidation potential is an effective strategy for protecting the positive electrode from oxidation, thereby increasing cell voltage and stored energy. An asymmetric system using the best-performing material (AC-Ph-H) as the positive electrode and unmodified carbon as the negative electrode enables long-term operation at a cell voltage up to 2.2V.

Therefore, protecting the surface of the positive electrode by grafting moieties that simultaneously lower the pHPZC and block active sites for oxidation proves to be a valuable strategy. This approach increases the energy density by 2.1 times and the power density by 4.5 times in supercapacitors operating with aqueous electrolytes.

Read the full article:

Alicia Gomis Berenguer, Martin Weissmann, Rachelle Omnee, Encarnación Raymundo-Piñero,
Adjusting the electrode surface functionality to improve the cell voltage of aqueous electrolyte carbon/carbon supercapacitors,
Carbon Journaů,
Volume 234, 2025, 119927, ISSN 0008-6223,
https://doi.org/10.1016/j.carbon.2024.119927

Related

Source: Science Direct

Recent Posts

ESR of Capacitors, Measurements and Applications

7.11.2025
3

3-Phase EMI Filter Design, Simulation, Calculation and Test

6.11.2025
22
Image credit: Samtec

How to Match the Right Connector with Protocol Requirements

6.11.2025
11

Smoltek CNF-MIM Capacitors Pass 1,000h Reliability Test

6.11.2025
9

Capacitor Lead Times: October 2025

6.11.2025
46

Paumanok Unveils Aluminum Capacitor Foils World Markets Study 2025-2030

6.11.2025
11

Transformer Design Optimization for Power Electronics Applications

4.11.2025
17

Microhardness — the Hidden Key to Understanding MnOx Cathode Quality in Tantalum Capacitors

3.11.2025
23

Samsung to Invest in its Philippine MLCC Facility to Meet Automotive Demand

3.11.2025
31

Lightweight Model for MLCC Appearance Defect Detection

3.11.2025
25

Upcoming Events

Nov 11
17:00 - 18:00 CET

Industrial Applications Demand More from Interconnects in Next-Gen Designs

Nov 12
11:00 - 12:00 CET

PCB Design: Impedance is for everyone!

Nov 12
November 12 @ 12:00 - November 13 @ 14:15 EST

Microelectronic Packaging Failure Modes and Analysis

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version