Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Littelfuse Acquires Basler Electric Enhancing High-Growth Industrial Market

    DigiKey Grows Inventory with Over 31K New Stocking Parts in Q3 2025

    Murata Expands Automotive Metal Frame Y2/X1 Safety MLCC Capacitors to 500V

    Source: Semiconductor Intelligence

    October 25 Electronics Production: U.S. vs. Global Changes

    binder expands M8 portfolio with 360° shielded cable connectors

    Vishay Releases Space-Grade 150 W 28V Planar Transformers

    October 2025 Interconnect, Passives and Electromechanical Components Market Insights

    Exxelia 4-Terminal Safety Capacitors Compliant with NF F 62-102 Railway Standard

    Wk 43 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Littelfuse Acquires Basler Electric Enhancing High-Growth Industrial Market

    DigiKey Grows Inventory with Over 31K New Stocking Parts in Q3 2025

    Murata Expands Automotive Metal Frame Y2/X1 Safety MLCC Capacitors to 500V

    Source: Semiconductor Intelligence

    October 25 Electronics Production: U.S. vs. Global Changes

    binder expands M8 portfolio with 360° shielded cable connectors

    Vishay Releases Space-Grade 150 W 28V Planar Transformers

    October 2025 Interconnect, Passives and Electromechanical Components Market Insights

    Exxelia 4-Terminal Safety Capacitors Compliant with NF F 62-102 Railway Standard

    Wk 43 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Researchers Prepared Activated Carbon from Coconut Husks for Sustainable Supercapacitors

2.7.2024
Reading Time: 5 mins read
A A

Indian researchers from Government College for Women, University of Kerala, Thiruvananthapuram, India have developed a method to produce activated carbon, suitable for supercapacitor fabrication from coconut husks, a major agriculture residue.

The coconut husk biowaste-derived activated carbon holds immense promise for sustainable and efficient green solutions for high-performance supercapacitors due to its availability, low cost, and eco-friendly nature.

RelatedPosts

Littelfuse Acquires Basler Electric Enhancing High-Growth Industrial Market

DigiKey Grows Inventory with Over 31K New Stocking Parts in Q3 2025

Murata Expands Automotive Metal Frame Y2/X1 Safety MLCC Capacitors to 500V

Supercapacitors, with significantly higher capacitance and energy storage capacity than conventional capacitors, have emerged as a vital component in the quest for sustainable energy storage solutions. But, the search for an ideal supercapacitor electrode material has been a significant challenge.

The research team, led by Xavier T.S., Assistant Professor, Department of Physics and including Merin Tomy, Ganesh S.G., Anu M.A., and Sreelakshmi S.R., found the prototype supercapacitors made of coconut husk-derived activated carbon to be four-times more efficient that the existing supercapacitors.

The findings have been published in American Chemical Society’s peer-reviewed Sustainable Resource Management Journal.

The team had leveraged the innovative microwave-assisted method designed at the Centralised Common Instrumentation Facility (CCIF) at the college.

Affordable inexpensice material

According to Dr. Xavier, activated carbon produced in this manner, utilising microwave technology, is relatively inexpensive and exhibits exceptional supercapacitor capability. The innovative microwave-assisted method has also opened new avenues for the production of activated carbon, which is under consideration for an Indian patent.

By utilising an advanced microwave pyrolysis reactor, the team was able to produce high-quality carbon within five minutes, eliminating impurities like ash and generating zero waste.

This innovative method not only saves time, but also yields activated carbon with an impressive surface area of 1,200 m2 g-1 and highly porous structures, making it an ideal material for various applications. The device’s high-power output is capable of powering two LEDs for 20 minutes, the researchers said.

CCIF, funded by the State government, is equipped with world-class state-of-the-art facilities, including advanced instruments like Nuclear Magnetic Resonance (NMR) spectrometer, Brunauer-Emmett-Teller (BET) analyser, fluorometer, electrochemical workstation, and PCR machines. The facility has already catered to the needs of researchers from over 50 colleges, six universities, and six national institutes.

Abstract

As a major agro waste of coconut, coconut husk is presented here as a cheap, abundant, novel, and sustainable green source of high-surface-area activated carbon for high-performance supercapacitor electrodes. The present communication satisfies one of the United Nations Sustainable Development Goals (UN goals) as an affordable, reliable, and sustainable solution for the existing energy technologies. The carbonization and the activation via a one-step integrated microwave pyrolysis system and vacuum furnace, respectively, are the production technologies used for the conversion of biomass into activated carbon. The chemical impregnation was performed in two different agents (KOH and H3PO4) and three higher activation temperatures (700, 800, and 900 °C), and their physical properties and the supercapacitive performances were analyzed and compared.

A high surface area of 1218 m2 g–1 was achieved for KOH impregnation (ACKOH 900) with a weight ratio of AC to KOH of 1:2 at an activation temperature of 900 °C, yielding an excellent specific capacitance of 342 F g–1, much higher than that of activated carbon with H3PO4 activation (243 F g–1). The energy storage performance was further carried out by fabricating a symmetric supercapacitor device in aqueous and polymer gel (PVA-H3PO4) electrolyte media, and excellent cyclic stability of nearly 100% was achieved with high power density for both KOH- and H3PO4-activated samples at high temperature, which can be interconnected with its enhanced surface area and high porosity that facilitates fast ion transport and improves energy storage performance. The fabricated supercapacitor cells, when used to power two red LEDs, showed a complete discharge at the end of 15 min while a maximum glow for 30 min was achieved for a single LED, which took 1 h for its complete discharge. Furthermore, via the present investigation, coconut-husk-derived activated carbon shows promise as a high capacitance, low cost, and renewable material, consequently suggesting a promising avenue toward high-power, affordable, renewable, and clean energy storage devices.

Conclusion

In summary, this work reveals the successful conversion of coconut husk biowaste into high-surface-area activated carbon via fast integrated pyrolysis followed by chemical activation with two activation agents at three different temperatures. FESEM micrographs with BET results revealed tubular honeycomb structures for activated carbon with mesopores on its walls, which plays a significant role in energy storage capacity. The choice of activation agent and temperature plays a crucial role in the surface area enhancement and thereby electrochemical properties, out of which ACKOH 900 was found to perform better than others with a specific capacitance of 342 F g–1.

Furthermore, a symmetric supercapacitor device was assembled in aqueous and polymer gel electrolytes, which could deliver an excellent capacitance performance with high power density. The polymer gel electrolyte allows a wide potential window of 2 V and delivers a specific capacitance of 224.4 F g–1 and a specific power of 746.63 W kg–1 with a capacitance retention rate of 100% after 20,000 charge–discharge cycles. The proposed coconut-husk-derived activated carbon has the potential to power the LED for 1 h in an aqueous electrolyte. The results recommended that the coconut husk biowaste-derived porous carbon is a promising one for sustainable and efficient green solutions for high-performance supercapacitor electrodes due to its availability, low cost, and eco-friendliness.

Read the complete article:

Effect of Activation Environment on Coconut-Husk-Derived Porous Activated Carbon for Renewable Energy Storage Applications; ACS Sustainable Resource Management Journal; https://doi.org/10.1021/acssusresmgt.4c00142

Related

Source: ACS Sustainable Resource Management Journal

Recent Posts

Murata Expands Automotive Metal Frame Y2/X1 Safety MLCC Capacitors to 500V

30.10.2025
2

Exxelia 4-Terminal Safety Capacitors Compliant with NF F 62-102 Railway Standard

27.10.2025
21

Samsung Releases Automotive Molded 2220 1kV C0G MLCC

23.10.2025
42

VINATech Offers Smallest 100µF Al-Hybrid Capacitor

23.10.2025
37

Murata Integrates Component Models into Cadence EDA Tools

21.10.2025
45

High Energy Density Polymer Film Capacitors via Molecular and Interfacial Design

15.10.2025
30

KYOCERA AVX Expands Stacked MLCC Capacitors Offering

14.10.2025
49

Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

10.10.2025
87

Enhancing Energy Density in Nanocomposite Dielectric Capacitors

9.10.2025
43

Advances in the Environmental Performance of Polymer Capacitors

8.10.2025
68

Upcoming Events

Nov 4
10:00 - 11:00 PST

Design and Stability Analysis of GaN Power Amplifiers using Advanced Simulation Tools

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

Nov 6
14:30 - 16:00 CET

Self-healing polymer materials for the next generation of high-temperature power capacitors

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version