Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Littelfuse Unveils High-Use Tactile Switches with 2 Million Cycle Lifespan

    KYOCERA AVX Releases Compact High-Directivity Couplers

    Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    Wk 18 Electronics Supply Chain Digest

    YAGEO Releases High Current SMD Common Mode Choke With Shape Core Construction

    Murata and NIMS Built New Database of Dielectric Material Properties

    Tariffs Crush Sales Sentiment in April 2025 ECST Results

    High-Density PCB Assemblies For Space Applications

    Solid State Polymer Multilayer Capacitors For High Temperature Application

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Improving Common Mode Noise Reduction while Decreasing BOM

    Die and Wire PCB Bonding Explained

    Rogowski Coil Current Sensor Explained

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Littelfuse Unveils High-Use Tactile Switches with 2 Million Cycle Lifespan

    KYOCERA AVX Releases Compact High-Directivity Couplers

    Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    Wk 18 Electronics Supply Chain Digest

    YAGEO Releases High Current SMD Common Mode Choke With Shape Core Construction

    Murata and NIMS Built New Database of Dielectric Material Properties

    Tariffs Crush Sales Sentiment in April 2025 ECST Results

    High-Density PCB Assemblies For Space Applications

    Solid State Polymer Multilayer Capacitors For High Temperature Application

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Improving Common Mode Noise Reduction while Decreasing BOM

    Die and Wire PCB Bonding Explained

    Rogowski Coil Current Sensor Explained

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Researchers Presented Ultramicro Graphene Supercapacitor Based on FET Transistor Technology

3.4.2023
Reading Time: 4 mins read
A A

Researchers at the Department of Instrumentation and Applied Physics (IAP), Indian Institute of Science (IISc), have designed a novel ultramicro graphene supercapacitor using gate field induced FET transistor technology, a tiny device capable of storing an enormous amount of electric charge.

It is also much smaller and more compact than existing supercapacitors and can potentially be used in many devices ranging from streetlights to consumer electronics, electric cars and medical devices.

RelatedPosts

Littelfuse Unveils High-Use Tactile Switches with 2 Million Cycle Lifespan

KYOCERA AVX Releases Compact High-Directivity Couplers

Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

Most of these devices are currently powered by batteries. However, over time, these batteries lose their ability to store charge and therefore have a limited shelf-life. Capacitors, on the other hand, can store electric charge for much longer, by virtue of their design.

For example, a capacitor operating at 5 volts will continue to operate at the same voltage even after a decade. But unlike batteries, they cannot discharge energy constantly—to power a mobile phone, for example.

Supercapacitors, on the other hand, combine the best of both batteries and capacitors—they can store as well as release large amounts of energy, and are therefore highly sought-after for next-generation electronic devices.

In the current study, published in ACS Energy Letters, the researchers fabricated their supercapacitor using Field Effect Transistors or FETs as the charge collectors, instead of the metallic electrodes that are used in existing capacitors. “Using FET as an electrode for supercapacitors is something new for tuning charge in a capacitor,” says Abha Misra, Professor at IAP and corresponding author of the study.

Figure 1.: a) schematic representation of different stacked layers b) top view schematic of the supercapacitor device c) wire bonded supercapacitor device on PCB; source: IAP/ ACS Energy Letters

Current capacitors typically use metal oxide-based electrodes, but they are limited by poor electron mobility. Therefore, Misra and her team decided to build hybrid FETs consisting of alternating few-atoms-thick layers of molybdenum disulfide (MoS2) and graphene—to increase electron mobility—which are then connected to gold contacts. A solid gel electrolyte is used between the two FET electrodes to build a solid-state supercapacitor. The entire structure is built on a silicon dioxide/silicon base.

“The design is the critical part, because you are integrating two systems,” says Misra. The two systems are the two FET electrodes and the gel electrolyte, an ionic medium, which have different charge capacities. Vinod Panwar, Ph.D. student at IAP and one of the lead authors, adds that it was challenging to fabricate the device to get all the ideal characteristics of the transistor right. Since these supercapacitors are very small, they cannot be seen without a microscope, and the fabrication process requires high precision and hand-eye coordination.

Once the supercapacitor was fabricated, the researchers measured the electrochemical capacitance or charge-holding capacity of the device by applying various voltages. They found that under certain conditions, the capacitance increased by 3000%. By contrast, a capacitor containing just MoS2 without graphene showed only an 18% enhancement in capacitance under the same conditions.

In the future, the researchers are planning to explore if replacing MoS2 with other materials can increase the capacitance of their supercapacitor even more. They add that their supercapacitor is fully functional and can be deployed in energy-storage devices like electric car batteries or any miniaturized system by on-chip integration. They are also planning to apply for a patent on the supercapacitor.

Abstract

On-chip microscopic energy systems have revolutionized device design for miniaturized energy storage systems. Many atomically thin materials have provided a unique opportunity to develop highly efficient small-scale devices. We report an ultramicro-electrochemical capacitor with two-dimensional (2D) molybdenum disulphide (MoS2) and graphene-based electrodes. Due to the tunable density of states, 2D MoS2 provides electric field-induced doping and, combined with a graphene interface, leads to a high carrier mobility. The fabricated solid-state energy storage device is obtained using a gel electrolyte that provides an electrochemical capacitance of 1.8 mF/cm2. An extraordinary enhancement of ∼3000% in electrochemical capacitance (55 mF/cm2from 1.8 mF/cm2, measured from a cyclic voltammetry curve) is observed upon application of back-gate field of −25 V, which is more than the enhancement (18%) observed in a MoS2 electrochemical capacitor (0.95 mF/cm2 from 0.8 mF/cm2) without graphene, whereas the galvanic charge–discharge measurements analysis shows ∼1677% enhancement under the application of −25 V back-gate voltage. Thus, the electric field-induced doping in 2D MoS2, in addition to a high charge carrier mobility due to the graphene, plays a crucial role in an extraordinary large energy storage in the ultramicro-electrochemical capacitor. We also evaluated the capacitance response using an AC signal superimposed with the DC bias to investigate the influence of polarization potential on the electrolyte. The study provides a benchmark development of an ultramicro-electrochemical capacitor for ultrahigh charge storage capability.

Related

Source: ACS Energy Letters

Recent Posts

Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

6.5.2025
33

Murata and NIMS Built New Database of Dielectric Material Properties

5.5.2025
42

Tariffs Crush Sales Sentiment in April 2025 ECST Results

5.5.2025
57

Solid State Polymer Multilayer Capacitors For High Temperature Application

2.5.2025
28

Graphene-Based BOSC Bank Of Supercapacitor Cells

2.5.2025
13

Hybrid Energy Storage System for Nanosatellite Applications

1.5.2025
9

COTS-Plus Bulk Tantalum Capacitor for LEO Flight Platforms

29.4.2025
37

Shielding Cabinets

29.4.2025
17

Magnetic Shielding and Magnetic Shielding Sheets

29.4.2025
25

High Energy Density Supercapacitors for Space Applications

28.4.2025
35

Upcoming Events

May 14
11:00 - 12:00 CEST

Reliable RIGID.flex PCBs for Critical Applications – Made in Europe

May 28
16:00 - 17:00 CEST

Power Over Data Line

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Tariffs Crush Sales Sentiment in April 2025 ECST Results

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version