• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

Resistors Stability Prediction

2.9.2022

Resonant Capacitors in Implantable Medical Devices Wireless Power Transfer

8.12.2023

Smoltek Announces Exclusive License for CNF-MIM Carbon Nanofiber Capacitors with YAGEO

7.12.2023

Modelithics Launches NEW 3D Library for Cadence Clarity 3D Solver

7.12.2023

World’s First Murata Parasitic Element Coupling Device Boost Wi-Fi Antenna Efficiency

7.12.2023

CAP-XX Signs Joint Venture with Graphene Specialist Ionic Industries to Increase Energy Density in Supercapacitors

6.12.2023

Voltage Coefficient of Resistance Explained

6.12.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Resonant Capacitors in Implantable Medical Devices Wireless Power Transfer

    Smoltek Announces Exclusive License for CNF-MIM Carbon Nanofiber Capacitors with YAGEO

    Modelithics Launches NEW 3D Library for Cadence Clarity 3D Solver

    World’s First Murata Parasitic Element Coupling Device Boost Wi-Fi Antenna Efficiency

    CAP-XX Signs Joint Venture with Graphene Specialist Ionic Industries to Increase Energy Density in Supercapacitors

    Voltage Coefficient of Resistance Explained

    Heating of Power Inductors in Switching Regulators

    KYOCERA AVX Industry’s First Automotive MLV Varistors with Flexible Terminations Meets Both AEC-Q200 and VW Standards

    Laser Direct Structuring Technology Benefits for RF Components Applications

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Heating of Power Inductors in Switching Regulators

    Addressing EMC Issues; Texas Instruments and Würth Elektronik Webinar

    DC-Link Film Capacitors for DC-Charger Applications; WE Webinar

    Transformer Design for EMC; WE Webinar

    Filter Calculation and Selection with REDEXPERT EMI Filter Designer; WE Webinar

    Experimental Demonstration of Inductor Back Electromotive Force EMF

    Charging/Discharging of Linear andNon-linear Capacitors

    How to Select Inductor For Switching Power Supply

    Oscillators Integration, Selection Guide and Design In

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Resonant Capacitors in Implantable Medical Devices Wireless Power Transfer

    Smoltek Announces Exclusive License for CNF-MIM Carbon Nanofiber Capacitors with YAGEO

    Modelithics Launches NEW 3D Library for Cadence Clarity 3D Solver

    World’s First Murata Parasitic Element Coupling Device Boost Wi-Fi Antenna Efficiency

    CAP-XX Signs Joint Venture with Graphene Specialist Ionic Industries to Increase Energy Density in Supercapacitors

    Voltage Coefficient of Resistance Explained

    Heating of Power Inductors in Switching Regulators

    KYOCERA AVX Industry’s First Automotive MLV Varistors with Flexible Terminations Meets Both AEC-Q200 and VW Standards

    Laser Direct Structuring Technology Benefits for RF Components Applications

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Heating of Power Inductors in Switching Regulators

    Addressing EMC Issues; Texas Instruments and Würth Elektronik Webinar

    DC-Link Film Capacitors for DC-Charger Applications; WE Webinar

    Transformer Design for EMC; WE Webinar

    Filter Calculation and Selection with REDEXPERT EMI Filter Designer; WE Webinar

    Experimental Demonstration of Inductor Back Electromotive Force EMF

    Charging/Discharging of Linear andNon-linear Capacitors

    How to Select Inductor For Switching Power Supply

    Oscillators Integration, Selection Guide and Design In

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Resistors Stability Prediction

2.9.2022
Reading Time: 6 mins read
A A

Learn about the aging behavior of resistors using temperature calculations and the Arrhenius equation to understand resistor drift and resistors stability in article written by Dr. Steve Arar and published by All About Circuits.

Aging Prediction—Resistor Drift Due to Aging

To begin with, let’s remember that the value of a resistor changes with time. In many circuits, only a gross level of precision is required and the resistor aging might not be a serious issue. However, certain precision applications require resistors with a long-term drift as low as a few parts per million over the specified lifetime.

RelatedPosts

Gate Resistors Selection Guidelines

Aluminium Capacitors Series Connection Balancing

Vishay Wet Tantalum Capacitors Comply to Military H-Level Shock and Vibration Requirements

Therefore, it is important to develop aging prediction models with sufficient accuracy to ensure that the employed precision resistors maintain the specified precision over the entire lifetime of the system. One company, Vishay, suggests using the following equation (Equation 1) to calculate the long-term variation of a thin-film resistor:

Eq.1. Resistance ageing drift

where

  • Is the reference drift of the resistor at the reference time t0t0 and temperature θ0θ0.
  • Is the drift value after the desired operating time of the resistor, t, at temperature θjθj.

Equation 1 shows that raising the resistor’s operating temperature by 30 °K increases its long-term drift by a factor of 2. Additionally, the drift increases with the cube root of the operation time. For example, if the 1000-hour drift of the resistor at 125 °C is less than 0.25%, the resistor drifts after 8000 hours of operation at the same temperature (θj=θ0) is estimated by:

Arrhenius Equation for Resistor Aging Prediction

In Equation 1, the term that takes the temperature dependence into account is derived from the Arrhenius rate law which is also repeated below as Equation 2:

Eq.2. Arrhenius equation

This equation specifies how the speed of a reaction changes with temperature in Kelvin (T). According to Vishay, the aging process of both thin-film and foil resistors obeys the Arrhenius equation.

Figure 1 shows the aging data of identical foil resistors at different temperatures.

Figure 1. Image used courtesy of Vishay

In this figure, the natural logarithm of the standard deviation of the resistors’ drift distribution (Ln(DSD)) is plotted against 1000/T.

Note that a straight line can be fit to these data points. This is consistent with the Arrhenius equation, which can be expressed as:

This equation shows that the plot of Ln(PR) versus 1/T is a straight line when a reaction obeys the Arrhenius equation.

Since this relationship holds true for the data points in Figure 1, we can conclude that the aging process of these resistors obeys the Arrhenius law.

Estimate Resistor Temperature – Improving Long-term Resistor Stability

Based on Equation 1, keeping the resistor at a lower temperature can reduce its drift with time. The remaining question is, how can we keep the resistor cooler?

The θ terms in Equation 1 refer to the resistor temperature rather than the ambient temperature. The resistor temperature (θ Resistor) can be estimated by the following equation:

Where:

  • θA is the ambient temperature
  • Rth is the thermal resistance of the resistor
  • P is the power dissipated in the resistor

This equation shows that, in addition to the ambient temperature, the heat dissipated in the resistor and the thermal resistance value can affect the resistor temperature.

For the resistor to run cooler, we can limit the power dissipated in the resistor if possible. Besides, changing the characteristics of the PC board, such as the trace density and the number of the power/ground planes, can change the value of the effective thermal resistance of the system. This change is because the PC board acts as a heatsink soldered to the resistor. A more efficient heatsink or use of SMD thermal conductors can improve heat transfer and keep the circuit components, including the precision resistors, cooler.

Adjusting different design parameters, we can attempt to keep the resistor temperature below a typical maximum value of 85 °C to achieve improved long-term stability.

It is also worth mentioning that operating a resistor at power levels higher than the nominal value can lead to a long-term drift larger than that predicted by the Arrhenius-based equations. Above the rated power, some hot spots can appear in parts of the resistive material where the aging process is accelerated. This can lead to a drift value larger than that predicted by the average temperature of the resistor.

Source: All About Circuits

Related Posts

Resistors

Voltage Coefficient of Resistance Explained

6.12.2023
51
Inductors

Heating of Power Inductors in Switching Regulators

6.12.2023
38
Resistors

Bourns Announces Four New High Power Ultra-Low Ohmic Current Sense Resistors

4.12.2023
40

Upcoming Events

Dec 11
December 11 @ 12:00 - December 14 @ 14:00 EST

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Dec 15
12:00 - 14:00 EST

External Visual Inspection per Mil-Std-883 TM 2009

View Calendar

Popular Posts

  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Coefficient of Linear Thermal Expansion on Polymers Explained

    0 shares
    Share 0 Tweet 0
  • Smoltek Announces Exclusive License for CNF-MIM Carbon Nanofiber Capacitors with YAGEO

    0 shares
    Share 0 Tweet 0
  • Voltage Coefficient of Resistance Explained

    0 shares
    Share 0 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Archive

2023
2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.